A Study on Feed-forward Control for SIDO Buck Converter

S. Wu, Y. Kobori M. R. Li, F. Zhao Q. Li, Q. L. Zhu N. Takai H. Kobayashi (Gunma University)

T. Odaguchi T. Yamaguchi K. Ueda (AKM Technology Corporation)

J. Matsuda (Asahi Kasei Power Devices Corporation)

- Research Objective
- PWM Feedback control, Load response and cross-regulation
- Feed-forward control
- Simulation results
- Conclusion and future work

- Research Objective
- PWM Feedback control,

Load response and cross-regulation

- Feed-forward control
- Simulation results
- Conclusion and future work

Background

SIDO: Single Inductor Dual Output

Research Objective

Design feed-forward controller

- Improve cross-regulation of SIDO buck converter
- With simple circuit

- Research Objective
- PWM Feedback control, Load response and cross-regulation
- Feed-forward control
- Simulation results
- Conclusion and future work

Load response & PWM Feed-back control

Feed-back control is based on the error

Self-regulation & Cross-regulation

SIDO buck converter with exclusive control

- Research Objective
- PWM Feedback control, Load response and cross-regulation
- Feed-forward control
- Simulation results
- Conclusion and future work

Feed-forward control

Feed-forward control is based on predication

Accurate feed-forward

For buck converter with PWM,

feed-forward controller have two choices.

PWM Saw-tooth Add an additional voltage to error ΔV_E $--\Delta V_E = V_P L \Delta I_o / (V_{in} T_s)$ Error ~ Regulate the peak voltage of saw-tooth $--\Delta V_P = V_E V_{in} L \Delta I_o / [V_{out} (L \Delta I_o + V_{out} T_s)]$ PWM ΔV_{P} Complicated Saw-tooth Error

11

Block diagram of proposed method

Stiff

-- constant threshold

Fuzzy

-- constant ΔV_P

Simple

-- Only a few additional components

Regulation process

- Research Objective
- PWM Feedback control,

Load response and cross-regulation

- Feed-forward control
- Simulation results
- Conclusion and future work

SISO buck converter (1)

FF: Feed-forward ¹⁵

SISO buck converter (2)

SIDO buck converter (1)

 $I_{out1} = 0.5A/1A, I_{out2} = 0.5A$

SIDO buck converter (2)

- Research Objective
- PWM Feedback control,

Load response and cross-regulation

- Feed-forward control
- Simulation results
- Conclusion and future work

Conclusion

- SIDO converter is cost-effective
- Proposed a simple feed-forward controller.

- Verified it by simulation
- Cross-regulation is improved

Future work

- We will investigate dynamic threshold and adjustment of saw-tooth
- Design feed-forward controller for boost converter and buck-boost converter

THE END

THANKS FOR YOUR ATTENTION!

Q&A

Q1: In the proposed method (Page 12), voltage and current both are detected, so this method is voltage mode control or current mode control, or both of them are used?

A: the current is used only when the load is changed. If the load is always within the threshold, it just is a normally voltage mode PWM feedback control. So I think it is voltage control. And that no matter is voltage mode or current mode, they both are feedback control.

Q2: in this presentation, only the current of resistor is consider as load, what about the current of capacitor?

A: the capacitor is used to keep output voltage, it is not a part of load. But in fact, if we want to get an accurate feed-forward control, especially in a SIDO converter, the current of capacitor must be consider. In this design, we don't consider it for simplifying the controller. In future research, it should be used.

Q3: which software is used for your simulation and program?

A: SImetrix