A Study on Feed-forward Control for SIDO Buck Converter

S. Wu, Y. Kobori
M. R. Li, F. Zhao
Q. Li, Q. L. Zhu
N. Takai
H. Kobayashi
(Gunma University)

T. Odaguchi
T. Yamaguchi
K. Ueda
(AKM Technology Corporation)

J. Matsuda
(Asahi Kasei Power Devices Corporation)
Out-line

• Research Objective
• PWM Feedback control,
 Load response and cross-regulation
• Feed-forward control
• Simulation results
• Conclusion and future work
Out-line

• Research Objective
• PWM Feedback control, Load response and cross-regulation
• Feed-forward control
• Simulation results
• Conclusion and future work
Background

Dual Power Supply Circuit (DC-DC converter)

Conventional approach

SIDO Converters

Reduce number of inductors
Reduce cost
Reduce volume

SIDO: Single Inductor Dual Output
Research Objective

Design feed-forward controller
• Improve cross-regulation of SIDO buck converter
• With simple circuit

SIDO: Single Inductor Dual Output
Out-line

• Research Objective
• PWM Feedback control,
 Load response and cross-regulation
• Feed-forward control
• Simulation results
• Conclusion and future work
Load response & PWM Feed-back control

Feed-back control is based on the error

- I_{out} increases, I_L increases, V_{out} decreases, V_E increases, duty cycle increases.
- C supplies more power to output, C gets more charge, V_{out} increases.

Error Amplifier:
- V_E is the error signal.
- Reference is the setpoint of the voltage.

Feedback controller controls the output voltage V_{out} by adjusting the duty cycle D to minimize the error V_E. The error V_E is amplified by the error amplifier and fed back to the duty cycle controller to adjust D. The feedback control scheme ensures that the output voltage V_{out} remains constant despite changes in load or input voltage.
Self-regulation & Cross-regulation

SIDO buck converter with exclusive control
Out-line

• Research Objective
• PWM Feedback control, Load response and cross-regulation
• Feed-forward control
• Simulation results
• Conclusion and future work
Feed-forward control is based on predication

Feed-forward control is based on predication
Accurate feed-forward

For buck converter with PWM, feed-forward controller have two choices.

- Add an additional voltage to error
 \[\Delta V_E = \frac{V_P L \Delta I_o}{V_{in} T_s} \]
- Regulate the peak voltage of saw-tooth
 \[\Delta V_P = \frac{V_E V_{in} L \Delta I_o}{V_{out} (L \Delta I_o + V_{out} T_s)} \]

 trúc: Complicated
Block diagram of proposed method

- Stiff -- constant threshold
- Fuzzy -- constant ΔV_P
- Simple -- Only a few additional components
Regulation process

\[(I_{\text{Load}} - I_{\text{Thr}}) < I_L \approx (I_{\text{Load}} + I_{\text{Thr}})\]

load decrease → rise \(V_p\)

load increase → reduce \(V_p\)
Out-line

• Research Objective
• PWM Feedback control, Load response and cross-regulation
• Feed-forward control
• Simulation results
• Conclusion and future work
SISO buck converter (1)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{in}</td>
<td></td>
<td>12V</td>
</tr>
<tr>
<td>L</td>
<td></td>
<td>20μ</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>500μ</td>
</tr>
<tr>
<td>V_{out}</td>
<td></td>
<td>6V</td>
</tr>
<tr>
<td>f_{switch}</td>
<td></td>
<td>500kHz</td>
</tr>
</tbody>
</table>

$I_{out} = 0.5A/1A$

SISO: Single Inductor Single Output

FB: Feed-back

FF: Feed-forward
$I_{out} = 0.5A/1.7A$
SIDO buck converter (1)

\[I_{out1} = 0.5A/1A, \quad I_{out2} = 0.5A \]

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{in})</td>
<td>12V</td>
</tr>
<tr>
<td>(L)</td>
<td>20(\mu)</td>
</tr>
<tr>
<td>(C_1, C_2)</td>
<td>500(\mu)</td>
</tr>
<tr>
<td>(V_{out1})</td>
<td>6V</td>
</tr>
<tr>
<td>(V_{out2})</td>
<td>4V</td>
</tr>
<tr>
<td>(f_{\text{switch}})</td>
<td>500kHz</td>
</tr>
</tbody>
</table>
SIDO buck converter (2)

$I_L = 2.2A$

$I_{out1} + I_{out2}$

V_{out2}

V_{out1}

$I_{out1} = 0.5A/1.7A$, $I_{out2} = 0.5A$
Out-line

• Research Objective
• PWM Feedback control, Load response and cross-regulation
• Feed-forward control
• Simulation results

• Conclusion and future work
Conclusion

• SIDO converter is cost-effective
• Proposed a simple feed-forward controller.
• Verified it by simulation
• Cross-regulation is improved
Future work

• We will investigate dynamic threshold and adjustment of saw-tooth
• Design feed-forward controller for boost converter and buck-boost converter
THE END

THANKS FOR YOUR ATTENTION!
Q&A

Q1: In the proposed method (Page 12), voltage and current both are detected, so this method is voltage mode control or current mode control, or both of them are used?

A: the current is used only when the load is changed. If the load is always within the threshold, it just is a normally voltage mode PWM feedback control. So I think it is voltage control. And that no matter is voltage mode or current mode, they both are feedback control.
Q2: in this presentation, only the current of resistor is consider as load, what about the current of capacitor?

A: the capacitor is used to keep output voltage, it is not a part of load. But in fact, if we want to get an accurate feed-forward control, especially in a SIDO converter, the current of capacitor must be consider. In this design, we don’t consider it for simplifying the controller. In future research, it should be used.

Q3: which software is used for your simulation and program?

A: SImetrix