## マルチバンドパスΔΣ変調器の DWAアルゴリズム

# 群馬大学 工学部 電気電子工学科萩原広之 元澤篤史 小林春夫小室貴紀 傘 昊

## 発表内容

- 研究目的
- マルチバンドパスΔΣ変調器
- ・電子部品の線形性計測への応用
- マルチバンドパス用DWAアルゴリズム
- マルチバンドパス用DWAアルゴリズムの応用
- まとめ



## 発表内容

#### • 研究目的

- マルチバンドパスΔΣ変調器
- ・電子部品の線形性計測への応用
- マルチバンドパス用DWAアルゴリズム
- マルチバンドパス用DWAアルゴリズム

#### の応用

まとめ

## 研究目的

- マルチバンドパスΔΣ変調器の 新たな応用の提案を行う。
- マルチバンドパス用DWAアルゴリズムを 開発する。
- そのアルゴリズムの他の変調器への応用 を行う。



## 発表内容

- 研究目的
- マルチバンドパスΔΣ変調器
- ・電子部品の線形性計測への応用
- マルチバンドパス用DWAアルゴリズム
- マルチバンドパス用DWAアルゴリズム

#### の応用

まとめ



## ΔΣAD変調器



#### これまでの Δ Σ A D 変 調 器



![](_page_7_Picture_0.jpeg)

#### マルチバンドパスΔΣAD変調器 タイプ 1

![](_page_7_Figure_2.jpeg)

![](_page_8_Picture_0.jpeg)

#### マルチバンドパスΔΣAD変調器 タイプ2

![](_page_8_Figure_2.jpeg)

**Gunma University KOBA Lab.** 

9

![](_page_9_Picture_0.jpeg)

## 発表内容

- 研究目的
- マルチバンドパスΔΣ変調器
- ・電子部品の線形性計測への応用
- マルチバンドパス用DWAアルゴリズム
- マルチバンドパス用DWAアルゴリズム
  - の応用
- まとめ

#### リニア・アナログ回路と非線形性

![](_page_10_Figure_2.jpeg)

![](_page_10_Figure_3.jpeg)

![](_page_11_Picture_0.jpeg)

#### マルチバンドパスΔΣAD変調器の 高調波歪み測定への応用の提案

シングルエンド回路・信号のリニア・アナログ回路の場合 基本波とともに 0次、2次、3次、4次、....の高調波を高精度にAD変換

タイプ | のマルチバンドパス変調器を使用

![](_page_11_Figure_4.jpeg)

![](_page_12_Picture_0.jpeg)

#### マルチバンドパスΔΣAD変調器の 高調波歪み測定への応用の提案

差動回路・信号のリニア・アナログ回路の場合 偶数次の高調波はキャンセルされる

基本波とともに 3次、5次、7次、....の高調波を高精度にAD変換 タイプ II のマルチバンドパス変調器を使用

![](_page_12_Figure_4.jpeg)

![](_page_13_Picture_1.jpeg)

- 研究目的
- マルチバンドパスΔΣ変調器
- ・電子部品の線形性計測への応用
- マルチバンドパス用DWAアルゴリズム
- マルチバンドパス用DWAアルゴリズム

の応用

まとめ

![](_page_14_Figure_1.jpeg)

![](_page_14_Figure_2.jpeg)

![](_page_14_Figure_3.jpeg)

1ビット変調器

フィードバックのDACの線形性が保証される 回路構成が比較的容易

マルチビット変調器
 (ボボボボホーム)

低消費電力化(アンプのスルーレート要求緩和)

マルチビットDACの非線形性が問題 Gunma University KOBA Lab 15

## Multi-bit DACの非線形性

群馬大学コバ研

![](_page_15_Figure_1.jpeg)

#### セグメント・電流セル型DACの非線形性 S[in] = (2;3;1)R 0 2 3 4 5 6 7 1 $S_2$ *S*<sub>3</sub> $\bullet S_7$ lime 5 tin 1 1 5 4 **I+e**7 8 Vout=R•I•S[in]

電流セルのミスマッチ(e1,e2,e3,···e7)がDACの非線形性

![](_page_17_Picture_0.jpeg)

#### セグメント・電流セル型DACの非線形性 S[in] = (2;3;1)R 6 7 0 2 3 4 5 1 $S_3$ $\bullet S_7$ lime 5 ti 7 Iubrt 5 4 **I+e**7 8 **1+e**<sub>2</sub> Vout=R•I•S[in]

電流セルのミスマッチ(e1,e2,e3,···e7)がDACの非線形性

![](_page_18_Picture_0.jpeg)

#### セグメント・電流セル型DACの非線形性 S[in] = (2;3;1)R 6 7 0 2 3 4 5 1 on *S*<sub>3</sub> lime 5 ti 7 Iubrt 5 4 **I+e**7 **1+e**<sub>2</sub> 8 Vout=R•I•S[in]

電流セルのミスマッチ(e1,e2,e3,···e7)がDACの非線形性

#### セグメント・電流セル型DACの非線形性 S[in] = (2;3;1)R 6 7 0 2 3 4 5 1 $S_2$ *S*<sub>3</sub> $\bullet S_7$ lime 5 ti 7 Iubrt 5 4 I+e7 8 **1+e**<sub>2</sub> Vout=R•I•S[in]

電流セルのミスマッチ(e1,e2,e3,···e7)がDACの非線形性

![](_page_20_Picture_0.jpeg)

## DWA手法

一定のアルゴリズムの下で素子を選択し、非線形性を軽減する手法

![](_page_20_Figure_3.jpeg)

![](_page_21_Picture_0.jpeg)

## タイプ マルチバンドパス DWAアルゴリズム

 セグメント型DACセルを選択するため N個のポインタ使用
 LP DWAアルゴリズムを

Nチャネル・インターリーブ

![](_page_22_Picture_0.jpeg)

![](_page_22_Figure_2.jpeg)

![](_page_22_Figure_3.jpeg)

![](_page_23_Picture_0.jpeg)

![](_page_23_Figure_2.jpeg)

![](_page_23_Figure_3.jpeg)

![](_page_24_Picture_0.jpeg)

![](_page_24_Figure_2.jpeg)

![](_page_24_Figure_3.jpeg)

![](_page_25_Picture_0.jpeg)

![](_page_25_Figure_2.jpeg)

![](_page_25_Figure_3.jpeg)

![](_page_26_Picture_0.jpeg)

![](_page_26_Figure_2.jpeg)

![](_page_26_Figure_3.jpeg)

![](_page_27_Picture_1.jpeg)

## N=8の場合のタイプI マルチバンドパス変調器

![](_page_28_Figure_2.jpeg)

提案DWAアルゴリズムの効果を シミュレーションで確認

## タイプII マルチバンドパス DWAアルゴリズム

 セグメント型DACセルを選択するため N個のポインタ使用
 HP DWAアルゴリズムを Nチャネル・インターリーブ

#### High PassDAC非線形性 ノイズ・シェープ・アルゴリズム

![](_page_30_Picture_2.jpeg)

 $H(z) = 1/1 + Z^{-1}$ 

![](_page_30_Figure_4.jpeg)

#### High PassDAC非線形性 ノイズ・シェープ・アルゴリズム

![](_page_31_Picture_2.jpeg)

 $H(z) = 1/1 + Z^{-1}$ 

![](_page_31_Figure_4.jpeg)

#### High PassDAC非線形性 ノイズ・シェープ・アルゴリズム

![](_page_32_Picture_2.jpeg)

 $H(z) = 1/1 + Z^{-1}$ 

![](_page_32_Figure_4.jpeg)

#### High PassDAC非線形性 ノイズ・シェープ・アルゴリズム

![](_page_33_Picture_2.jpeg)

 $H(z) = 1/1 + Z^{-1}$ 

![](_page_33_Figure_4.jpeg)

#### High PassDAC非線形性 ノイズ・シェープ・アルゴリズム

![](_page_34_Picture_2.jpeg)

 $H(z) = 1/1 + Z^{-1}$ 

![](_page_34_Figure_4.jpeg)

![](_page_35_Figure_1.jpeg)

## N=4の場合のタイプII マルチバンドパス変調器

![](_page_36_Figure_2.jpeg)

提案DWAアルゴリズムの効果を シミュレーションで確認

![](_page_37_Picture_0.jpeg)

## **DWA DAC**

![](_page_37_Figure_2.jpeg)

### DWAアルゴリズムを実現する Pointer

![](_page_38_Figure_2.jpeg)

![](_page_39_Picture_1.jpeg)

- 研究目的
- マルチバンドパスΔΣ変調器
- ・電子部品の線形性計測への応用
- マルチバンドパス用DWAアルゴリズム
- マルチバンドパス用DWAアルゴリズムの応用
- まとめ

![](_page_40_Picture_0.jpeg)

## マルチバンド**DWA**アルゴリズム の応用 1

#### 中心周波数 fs/6 の 単一帯域 マルチビットバンドパス ΔΣAD変調器への応用

![](_page_40_Picture_3.jpeg)

![](_page_41_Picture_0.jpeg)

#### 単一帯域のバンドパス変調器の イメージ回避

![](_page_41_Figure_2.jpeg)

![](_page_42_Picture_0.jpeg)

## マルチバンドパス DWAを用いた バンドパスΔΣΑD変調器の構成

![](_page_42_Figure_2.jpeg)

#### シミュレーションによる DWAアルゴリズムの効果確認

![](_page_43_Figure_2.jpeg)

提案したマルチバンドパス用DWAアルゴリズムで DAC非線形性によるSNDR劣化の影響を軽減

![](_page_44_Picture_0.jpeg)

## マルチバンド**DWA**アルゴリズムの応用 2

## 等間隔ではない複数帯域の マルチビット・バンドパスAD変調器 への応用

#### 等間隔ではない複数帯域 マルチビット・バンドパスAD変調器

![](_page_45_Figure_2.jpeg)

#### 等間隔ではない複数帯域 バンドパスAD変調器の構成

![](_page_46_Figure_2.jpeg)

47

#### シミュレーションによる 提案DWAアルゴリズムの効果確認

![](_page_47_Figure_2.jpeg)

提案したマルチバンドパス用DWAアルゴリズムで DAC非線形性によるSNDR劣化の影響を軽減

![](_page_48_Picture_0.jpeg)

## マルチバンド**DWA**アルゴリズムの応用 3

#### 中心周波数 fs/6 の 単一帯域 マルチビットバンドパス ΔΣDA変調器への応用

![](_page_49_Picture_0.jpeg)

#### 中心周波数fs/6のΔΣDA変調器

![](_page_49_Figure_2.jpeg)

ΔΣDAでは2段目のフィードバックゲインの調整で極の位置を可変にできる

#### シミュレーションによる 提案DWAアルゴリズムの効果確認

![](_page_50_Figure_2.jpeg)

提案したマルチバンドパス用DWAアルゴリズムで DAC非線形性によるSNDR劣化の影響を軽減 Gunma University KOBA Lab

![](_page_51_Picture_0.jpeg)

まとめ

- マルチバンドパスΔΣ変調器のDWA
  アルゴリズムを提案した。
- マルチバンドパスΔΣ変調器の利用例を提 案した。

![](_page_51_Picture_4.jpeg)

![](_page_52_Figure_1.jpeg)

53

![](_page_53_Picture_1.jpeg)

### LP⇒Multi BP

![](_page_53_Figure_3.jpeg)

![](_page_54_Figure_1.jpeg)

## **DWA**の周波数特性

| /   |                     | 極の            | )場所            |                 |
|-----|---------------------|---------------|----------------|-----------------|
| N=1 |                     | 1/2           | 2fs            |                 |
| N=2 | 1                   | /4fs          | 3/4            | 4fs             |
| N=3 | 1/6fs               | 1/            | 2fs            | 5/6fs           |
| N=4 | 1/8fs               | 3/8fs         | 5/8fs          | 7/8fs           |
| N=5 | 1/10fs              | 3/10fs 1/     | 2fs 7/10fs     | 9/10fs          |
| N=6 | 1/12fs <sup>-</sup> | /4fs 5/12fs   | 7/12fs 3/      | 4fs 9/12fs      |
| N=7 | 1/14fs 3/1          | 4fs 5/14fs 1/ | 2fs 9/14fs 1   | 1/14fs 13/14fs  |
| N=8 | 1/16fs 3/16fs       | 5/16fs 7/16fs | 9/16fs 11/16fs | 13/16fs 15/16fs |
|     | l                   |               |                | fs              |

![](_page_55_Figure_1.jpeg)

## HPアルゴリズムの効果確認

![](_page_56_Figure_2.jpeg)

$$\mathbf{SNR[dB]} = 10 \cdot \log \frac{\mathbf{Signal Power}}{\mathbf{Noise Power}} = 10 \cdot \log \frac{\mathbf{V}_{\mathbf{Signal(rms)}}^2}{\mathbf{V}_{\mathbf{Noise(rms)}}^2} = 20 \cdot \log \frac{\mathbf{V}_{\mathbf{Signal(rms)}}}{\mathbf{V}_{\mathbf{Noise(rms)}}}$$