I.Qパスを分離した 複素バンドパス
 (

 <

群馬大学 電気電子工学科 傘吴 早川晃 神宮善敬 和田宏樹 萩原広之 小林和幸 小林春夫 (株) ルネサステクノロジ

松浦達治 矢萩孝一 工藤純也 中根秀夫

■ 研究目的

- 複素バンドパス
 ✓ ΣAD 変調器
- 問題点
 - ◆ I,Q経路間のミスマッチによる性能劣化
 - ◆ 複雑なレイアウト
- 新しい変調器アーキテクチャの提案
 - ◆ 上下経路を分離できる
 - ◆ 変調器内部キャパシタのダイナミック・エレメント・マッチング

◆ 考察:

- <mark>☞ シミュレー</mark>ションによる確認
- ✓ レイアウトの簡単化
- まとめ

■ 研究目的

- 複素バンドパス
 ▲ とのの目的
- 問題点
 - ◆ I,Q経路間のミスマッチによる性能劣化
 ◆ 複雑なレイアウト
- 新しい変調器アーキテクチャの提案
 - ◆ 上下経路を分離できる
 - ◆ 変調器内部キャパシタのダイナミック・エレメント・マッチング

◆ 考察:

✓ レイアウトの簡単化

■ まとめ

携帯電話、無線LAN等RF受信機用ADC 低消費電力化 高精度化

 目的: 有効な複素バンドパス⊿∑AD変調器を開発

従来式受信機回路の問題点

- RF → ベースバンド
- Zero-IF
 - ⇒ イメージ成分は生じない
- DCオフセット、1/fノイズ の影響が大きい。
- $\mathsf{RF} \to \mathsf{Low} \mathsf{IF}$
- DCオフセット、1/fノイズの影響が小。
- イメージ成分もAD変換
- 消費電力の無駄
- 複素バンドパス △ Σ A D 変調器 その問題を解決 Low- IF受信機に有効

複素BP⊿∑AD変調器を用いた低IF受信機 携帯電話、無線LAN、ブルートゥース用

■ 研究目的

■ 複素バンドパス ✓ ΣAD 変調器

■ 問題点

◆ I,Q経路間のミスマッチによる性能劣化

- ◆ 複雑なレイアウト
- 新しい変調器アーキテクチャの提案
 - ◆ 上下経路を分離できる
 - ◆ 変調器内部キャパシタのダイナミック・エレメント・マッチング

◆ 考察:

<mark>☞ レイアウト</mark>の簡単化

■ まとめ

複素バンドパスΔZAD変調器

IとQの2入出力信号

複素アナログ入力信号 Vin = Iin + jQin ↓ AD変換 複素デジタル出力信号 Vout = Iout + jQout

I、Qミスマッチ $a \rightarrow$ イメージ入力信号、イメージ量子化ノイズ ⇒信号帯域に回り込み \rightarrow SNR劣化

I, Q経路ミスマッチ影響を軽減する手法

S. Jantzi, et al.," Quadrature bandpass ⊿∑ modulator for digital radio," *IEEE Journal of Solid-State Circuits*, vol.32, pp.1935-1949 (Dec. 1997).

イメージ帯域に1つの極を配置 量子化ノイズの回りこみを軽減 SNR劣化を改善 欠点: イメージ帯域に極 回路規模が大 消費電力も大

NTF: ノイズ・トランス・ファンクション

■ 研究目的 ■ 複素バンドパス / ΣAD 変調器 ■ 問題点 ◆ I.Q経路間のミスマッチによる性能劣化 ◆ 複雑なレイアウト 新しい変調器アーキテクチャの提案 ◆ 上下経路を分離できる ◆ 変調器内部キャパシタのダイナミック・エレメント・マッチング ◆ 考察: レイアウトの簡単化

■ まとめ

マルチビット複素バンドパス⊿∑AD変調器の設計

設計の目標: 高精度・低消費電力

	従来手法	設計
変調器の次数	高次	2次
内部ADC/DAC	1ビット	マルチビット
ミスマッチ対策	イメージ帯域に1次の極	新構成

■ 低い次数: 回路の量が小

マルチビット:

- ☞ 安定性が良くなり、最大入力レベルが高くなる
- ☞ 量子化ノイズが小
- アンプのスルーレートの要求が緩和される。
- ☞ アンプの消費電力小
- ◆ マルチビットDACの非線形性:
 - 複素DWAアルゴリズムで解決(KWS16で発表)
- イメージ帯域の極不要

 ミスマッチ影響の改善策の提案

複素バンドパス⊿∑AD変調器のブロック図

複素バンドパス ΔΣAD変調器設計上の問題点

I、Q経路間ミスマッチの影響
 レイアウト配線が複雑

チップフロアプラン

■ 研究目的 ■ 複素バンドパス / ΣAD 変調器 ■ 問題点 ◆ I.Q経路間のミスマッチによる性能劣化 ◆ 複雑なレイアウト 新しい変調器アーキテクチャの提案 ◆ 上下経路を分離できる ◆ 変調器内部キャパシタのダイナミック・エレメント・マッチング ◆ 考察:

✓ レイアウトの簡単化

■ まとめ

複素バンドパス⊿∑AD変調器アーキテクチャの提案

MUXを用いて、I、Q信号は上下の経路を交互的に使用
 I、Q経路間ミスマッチの影響を軽減

上下経路間のクロスする部分がなくて、レイアウト配線が簡単

従来式複素バンドパス

ΔΣAD変調器の信号

 $I_{M}(n) = Iin(n) + I_{A}(n-1) - Q_{M}(n-1)$

 $Q_{M}(n) = Qin(n) + Q_{A}(n-1) + I_{M}(n-1)$

従来式複素バンドパス

Δ

Σ

ΑD

変調器の信号

 $I_N(n) = I_M(n-1) + Q_A(n-1) - Q_N(n-1)$

 $Q_N(n) = Q_M(n-1) + I_A(n-1) - I_N(n-1)$

従来式複素バンドパス
 ⊿ΣAD変調器の信号

 $I_{M}(n) = Iin(n) + I_{A}(n-1) - Q_{M}(n-1)$ $Q_{M}(n) = Qin(n) + Q_{A}(n-1) + I_{M}(n-1)$ $I_N(n) = I_M(n-1) + Q_A(n-1) - Q_N(n-1)$

 $Q_N(n) = Q_M(n-1) + I_A(n-1) - I_N(n-1)$

提案複素バンドパス

Δ

Σ

ΑD

変調器の

信号(1)

提案複素バンドパス

Δ

Σ

ΑD変調器の信号(2)

24

提案複素バンドパス

Δ

Σ

ΑD変調器の信号(1)

提案複素バンドパス

Δ

Σ

ΑD変調器の信号(2)

提案複素バンドパス

Δ

Σ

ΑD変調器の信号(1)

 $Q_{M}(1) = Qin(1) + Q_{A1}(0) + I_{M}(0)$

提案複素バンドパス

Δ

Σ

ΑD変調器の信号(2)

 $Q_{M}(2) = Qin(2) + Q_{A1}(1) + I_{M}(1)$

提案複素バンドパス

Δ

Σ

ΑD変調器の信号(1)

29

提案複素バンドパス

Δ

Σ

ΑD変調器の信号(2)

提案複素バンドパス
 Δ
 Σ
 ΑD変調器の動作

提案回路は、従来回路と同等
 上下経路を交互にI、Q経路に使用

 ◆経路間ミスマッチがあっても、その影響を軽減できる

 DWAアルゴリズムでDAC対のミスマッチも軽減

キャパシタのダイナミック・エレメント・マッチング

キャパシタのダイナミック・エレメント・マッチング

回路上のエ夫

シミュレーションによるミスマッチ影響軽減効果の確認

まとめ

■ 新しい複素BPDSMのアーキテクチャを提案した。

◆上下経路間ミスマッチの影響を軽減
 ◆複素フィルタ内部クロス不要
 ●上下経路は完全に分離できる構成
 ●レイアウトが配線が簡潔
 MATLABIこよるシミュレーションで
 提案手法をでは、
 経路間ミスマッチの影響を軽減できることを確認した。