Paper ID 28 SFDR Improvement Algorithm for Current-Steering DACs

Shaiful Nizam Mohyar*,

H. Hassan, M. Murakami, A. Motozawa, H. Kobayashi,
O. Kobayashi, T. Matsuura, N. Takai, I. Shimizu,
K. Niitsu, M. Tsuji, M. Watanabe, N. Dobashi,
R. Shiota, S. Umeda, T. J. Yamaguchi

Gunma University, Japan

Universiti Malaysia Perlis, Universiti Teknologi MARA, Malaysia Nagoya University, STARC, Japan

Gunma University, Japan

- Introduction
- Switching-Sequence Post-Adjustment (SSPA)
- One-Element-Shifting (OES)
- SSPA & OES Combination
- Simulation Result
- Conclusion

Introduction

- Switching-Sequence Post-Adjustment (SSPA)
- One-Element-Shifting (OES)
- SSPA & OES Combination
- Simulation Result
- Conclusion

Introduction

Background

- Telecommunication devices
 - > Mobile phones, wireless modems & avionics
 - > High-speed, high-accuracy DAC!!!
- Application
 - Transmitters
 - > Interference reduction
 - > High SFDR performance
- Our approach

Digital rich for high SFDR DAC

DAC – Digital-to-Analog Converter SFDR – Spurious Free Dynamic Range

Gunma University, Japan

Spurious Free Dynamic Range (SFDR)

Degradation sources

- Data-dependent switching transients
 - Temporal disturbance
- Data-dependent output load variations
 - Output impedance change

Objective & Investigated Method

• Objective

- ♦ High SFDR
 - >Mismatch effect reduction
 - Low glitch

Proposed method

- Current source mismatches
 - Switching-Sequence Post-Adjustment (SSPA)
- Glitch effect

One-Element-Shifting (OES) Dynamic nonlinearity SSPA & OES Combination

Gunma University, Japan

Design Approach

Analog

- Complex hardware
- Not programmable
- Expensive (production & testing)

Digital

- Simple
- Programmable
- Low-cost

Digital rich approach for fine CMOS implementation

Current-steering DAC (CS DAC)

CS DAC limitation

Transistor mismatch

- Current source mismatch
- Source of timing errors

• Mismatch among current cells

Causing DAC static & dynamic non-linearity

Better transistor matching

- ♦ Big size ➔ Power loss
- ◆ Laid out close to each other → Complicated

Binary versus Unary CS DAC

SW3

SW6

SW2

R

R

SW2

SW1

Vout

SW1

Binary

- ♦ Small silicon area ☺
- High sampling speed ⁽²⁾
- Large glitch energy 8
- ♦ No redundancy ⊗

- ♦ Small glitch energy ☺
- Redundancy 🙂
- Large silicon area 8

SW7

Vout

Segmented CS DAC

Gunma University, Japan

Current Source Mismatch

➔ DAC nonlinearity ⊗!!!

Nonlinearity & SFDR degradation

Gunma University, Japan

What is Glitch?

• Main causes

Non-ideal switching behavior
 between two consecutive update steps

➔ MAJOR!!!

- Signal feedthrough
 - gate-drain capacitances
- Static timing uncertainty between two different current cells
- Asymmetric up & down output characteristics

Glitch by non-ideal switch

Unary 🗲 Small glitch 🙂, Current source mismatch 😕

Introduction

- Switching-Sequence Post-Adjustment (SSPA)
- One-Element-Shifting (OES)
- SSPA & OES Combination
- Simulation Result
- Conclusion

Why SSPA

- Post-fabrication
 - non-linearity improvement
- Small additional circuits
 - Current comparator (DSP inside SoC)
- Simple implementation
- Require extra current sources
 - Replacement \rightarrow defect / worst mismatch
- Complicated wiring

SSPA Operation

Data-dependent output 8!!!

- Introduction
- Switching-Sequence Post-Adjustment (SSPA)
- One-Element-Shifting (OES)
- SSPA & OES Combination
- Simulation Result
- Conclusion

TC Operation

Why OES

- Change data-dependent to data-independent
 - Disturbance reduction
- Glitch as small as in TC
 - ➔ Low-power
- Simple implementation

OES Operation

- Introduction
- Switching-Sequence Post-Adjustment (SSPA)
- One-Element-Shifting (OES)
- SSPA & OES Combination
- Simulation Result
- Conclusion

SSPA & OES Combination

SSPA – Switching-Sequence Post-Adjustment OES –One Element Shifting Gunma University, Japan

- Introduction
- Switching-Sequence Post-Adjustment (SSPA)
- One-Element-Shifting (OES)
- SSPA & OES Combination
- Simulation Result
- Conclusion

SFDR Performance

SFDR Performance vs Mismatch

Glitch

Gunma University, Japan

SSPACES — Switching-Sequence Post-Adjustment & One Element Shifting Combination TC – Thermometer-code

Comparison

fin = 1.433MHz, fs = 4.096MHz, 10-bit σ : 6% , min:-20%, max:-20%

Algorithm	SFDR (dBFS)	SFDR (dBc)	Diff (dB)	Switching Occurrences	Diff (%)
СТС	61.3	58.3	+ 24.0	2376311	+ 0.18
OES	63.3	60.3	+ 22.1	2380181	+ 0.02
SSPACTC	83.8	80.7	+ 1.6	2376311	+ 0.18
Proposed (SSPA+OES)	85.4	82.4	-	2380692	-

- Introduction
- Switching-Sequence Post-Adjustment (SSPA)
- One-Element-Shifting (OES)
- SSPA & OES Combination
- Simulation Result
- Conclusion

Conclusion

- Proposed method
 - ♦ SSPA → Mismatch-induced distortion reduction
 - ♦ OES → Data-dependent distortion suppression
- Simulation result SSPAOES combination
 - ♦ >20 dB SFDR compared to conventional TC
 - Comparable small glitch energy to conventional TC

Thank you very much for your kindly attention

Presented by Shaiful Nizam Mohyar

Question & Answer

