Design of a Simple Feed-Forward Controller for DC-DC Buck Converter

Shu Wu,Yasunori Kobori,Zachary Nosker,Murong Li,Feng Zhao,Li Quan,Qiulin Zhu,Nobukazu Takai,Haruo Kobayashi

Gunma University, Japan

Tetsuji Yamaguchi, Eiji Shikata, Tsuyoshi Kaneko,

AKM Technology Corporation

Kimio Ueda

Asahi Kasei Microdevices

Outline

- Research Objective
- Proposed Feed-forward Control Method
 - Capacitor Charge Balance
 - Proposed Feed-forward Controller
- Simulation Results
 - SISO Buck Converter Simulation
 - SIDO Buck Converter Simulation
- Conclusion

Outline

- Research Objective
- Proposed Feed-forward Control Method
 - Capacitor Charge Balance
 - Proposed Feed-forward Controller
- Simulation Results
 - SISO Buck Converter Simulation
 - SIDO Buck Converter Simulation
- Conclusion

Background

SIDO: Single Inductor Dual Output

Cross-Regulation

SIDO buck converter with feedback control

Essential problem: transient response

Conventional Method

- Feed-back control Control Delay
- Feed-forward + Feed-back control

Accurate control variables modulation are required

digital non-linear feed-forward control
Complicated for SIDO converter
Not cost-effective

Research Objective

• Principle

Charge balance of output capacitor

- Advantage
 - -Simple
 - -Fast transient response
 - -Cross-regulation improvement for SIDO buck converter

Outline

- Research Objective
- Proposed Feed-forward Control Method
 - Capacitor Charge Balance
 - Proposed Feed-forward Controller
- Simulation Results
 - SISO Buck Converter Simulation
 - SIDO Buck Converter Simulation
- Conclusion

Charge Balance (1)

SISO buck converter

- Charge by input and inductor
- Discharge to output

Charge Balance (3)

Charge Balance (4)

System Block Diagram

Integrate the current of output capacitor (1)

Integrator Circuit

Integrate the current of output capacitor (2) Integrator Timing Chart

Control Variable Compensation (1) N-period integrator

Control Variable Compensation (2)

 $V_{I nT}$ ---output of N-period integrator

 V_{con}' ---single period integration control variable ΔV ---constant compensation

Saw-tooth Generator

Sawtooth Generator

Outline

- Research Objective
- Proposed Feed-forward Control Method
 - Capacitor Charge Balance
 - Proposed Feed-forward Controller
- Simulation Results
 - SISO Buck Converter Simulation
 - SIDO Buck Converter Simulation
- Conclusion

Parameters and Phase Compensation

Converter Parameters

V_{in} Input voltage 12V SISO SIDO Vout Output voltage 6V 6V, 4V Inductor 20µH L С 500µF **Output** capacitor ESR **Equivalent Series Resistance** 5mΩ f_{switch} Switching frequency 500kHz

Phase Compensation

Open-loop Bode Plot Bode Diagram 60 40 20 Magnitude (dB) **Open-loop** -20 LC filter -40 Phase compensation -60 -80 Phase (deg) -45 Phase Margin $\approx 45^{\circ}$ -90 -1351€ -180 10^{3} 10⁴ 10 10 Frequency (HZ) 20KHz

SISO buck converter(1)

 $I_o: 0.5A \rightarrow 1A$

Output under-shoot: Decrease 11mV→5mV **Response time:** Decrease 500µ s→8 µ s (1) load current (2) inductor current (FB) (3) inductor current FF (4) output voltage (FB) (5) output voltage (6) PWM signal

(7) saw-tooth signal

SISO buck converter(2)

 $I_o: 0.5A \rightarrow 1.5A$

(1) load current

(2) inductor current (FB)

(3) inductor current FF

- (4) output voltage (FB)
- (5) output voltage
- (6) PWM signal

(7) saw-tooth signal

Outline

- Research Objective
- Proposed Feed-forward Control Method
 - Capacitor Charge Balance
 - Proposed Feed-forward Controller
- Simulation Results
 - SISO Buck Converter Simulation
 - SIDO Buck Converter Simulation
- Conclusion

Conclusion

Proposed new feed-forward controller
Simple:

Only output capacitor current is detected Digital nonlinear calculation not required

Applicable to SIDO converter Cost-effective

Available:

Transient response is Significantly improved

Cross-regulation of SIDO converter is improved

The End

Thanks for your attention

Presented by 呉澍(Wu Shu)

Question and Answer 1

- The simulation result in page 21 and 22, there is oscillation in output voltage after transient response. Is it a right result?
- No, it is not a good result. This oscillation is caused by qualitatively multi-period integration compensation. But feed-forward require accurate control variable modulation. This problem will be improved in further.

Question and Answer 2

- Normally when we talk about the voltage control mode and the current control mode of switching power supplies, they belong to feedback control scheme. What is the different between your proposed method and current control mode?
- Current control mode is feedback control. Inductor current is detected and compared with error signal. By this comparison, duty cycle is regulated. While our proposed method use capacitor current to regulate sawtooth signal. When transient response happen, we don't need wait until error signal is changed, then regulate duty cycle.