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Abstract—This paper presents a theoretical analysis of the
stochastic calibration of TDC using two ring oscillators. De-
signers of TDC with the calibration function have to decide
the design parameters to guarantee the convergence of error
and valid calibration time. The basic theory of the calibration
is useful to decide these parameters and the policy on the cali-
bration design. The performance of the stochastic calibration
depends on the design parameters, the frequencies of the two
ring oscillators, the number of the stages, the buffer delay,
and so on. This work analyzes explicitly the relation between
these parameters and the performance of the calibration with
simulation-based analysis. Simulation results reveal that the
convergence of the calibration is guaranteed when both of the
cycles of the two ring oscillators are the prime cycles. The
histogram of each bin converges to the corresponding buffer
delay value in a well-behaved manner; the DNL measurement
error decreases monotonically in proportion to the increase of
the number of the times of the measurement. In other words,
the required number of the measurement times is in proportion
to the required accuracy of calibration. This result is applied
to the calibration of VDL-based TDC, too.

I. INTRODUCTION

A Time-to-Digital-Converter (TDC) measures the time

interval between two edges, and time resolution of several

picoseconds can be achieved when the TDC is implemented

with an advanced CMOS process. TDC applications include

phase comparators of all-digital PLLs, sensor interface cir-

cuits, modulation circuits, demodulation circuits, as well as

TDC-based ADCs [1], [2], [3], [4], [5], [6], [7], [8], [9]. The

TDC will play an increasingly important role in the nano-

CMOS era, because it is well suited to implementation with

fine digital CMOS processes; a TDC consists mostly of

digital circuitry, and resolution improves as switching speed

increases.

Although the resolution of TDC is high, the linearity

of TDC is lower. Therefore, self-calibration technique for

high linearity is required. Ito et al. proposed the stochastic

self-calibration technique of TDC using two ring oscillators

[10]. Because this calibration technique is fully digital, it can

be easily implemented on SOC fabricated with nanometer

technology. Because this technique requires two ring oscil-

lators unlike the method from [11], [12], the cost is lower.

This paper analyzes the stochastic calibration of TDC us-

ing two ring oscillators theoretically. Designers of TDC with

the calibration function have to decide design parameters

to guarantee the convergence of error and valid calibration

time. The basic theory of the calibration is useful to decide

these parameters and the policy on the calibration design.

The convergence of the stochastic calibration depends on the

uniformity of the differential delay sequence. The uniformity

of the differential delay sequence depends on the design

parameters, the frequencies of the two ring oscillators, the

number of the stages, the buffer delay and so on. This work

analyzes explicitly the relation between these parameters

and the performance of the calibration with simulation-based

analysis.

The rest of the paper is organized as follows. Section

II describes the preliminaries for the following explana-

tion. Section III explains the stochastic calibration using

two ring oscillators. Section IV shows the simulation

results. Finally, section V concludes the paper.

II. PRELIMINARIES

In this work, we assume the basic TDC. Figure 1 (a)

shows an example of the architecture of the basic TDC with

four stages. The TDC is composed of four positive edge

triggered D-type flip flops and an upper delay line and a

lower clock line. The delay line is inserted four buffers

with uniform delay. Each stage of a TDC is composed of

a flip flop and a buffer. Suppose the two input signals are

START and STOP. The START is the input of the upper

delay line. The STOP is the input of the clock line. The

delay of the buffer of each stage is τ . The TDC measures

the time interval between a transition from START and a

transition from STOP. The resolution is equal to delay of a

buffer.

In case of vernier delay line (VDL), buffers are inserted

to the clock line, too. Each stage of VDL is composed of

a flip flop, an upper buffer, and a lower buffer [13]. When

delay of an upper buffer is τ1 and the delay of a lower buffer

is τ2, the resolution Δ is equal to τ1 − τ2. The function of
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Figure 1. Basic 2-bit TDC.

VDL is equivalent to that of the basic TDC with the buffers

with the delay Δ.

Figure 1 (b) shows the timing chart of the basic TDC

when the time interval between a transition signal from

START and a transition signal from STOP is 2. After

the measurement, the converter CNV transforms the result

of the thermometer code Q0Q1Q2Q3 = 1100 into the

corresponding SW code O0O1O2O3 = 0100. The SW

code is transformed into the corresponding binary code

B0B1 = 01 by the encoder ENC.

III. STOCHASTIC SELF-CALIBRATION USING TWO RING

OSCILLATORS

This section explains the stochastic self-calibration of

TDC using two ring oscillators. Subsection III-A describes

the basics. Subsection III-B shows the TDC with the

stochastic self-calibration function. Subsection III-C ex-

plains the calibration sequence. Subsection III-D shows the

characteristics of the differential delay sequence generated

by the two ring oscillators.

A. Basics

In the stochastic calibration, the differential delays gener-

ated by the two ring oscillators are measured consecutively

with TDC. The histogram is constructed with the measure-

ment results. The variation of the delay of the buffer of each

stage is estimated with the constructed histogram. Figure

2 shows the basics. All the buffers on the delay line of

the TDCs of Fig. 2 (a) and (c) have the uniform delay

1. On the other hand, the buffers of the TDCs of Fig. 2

(b) and (d) have varied delay. The delay of the buffers of

the first, the second, the third, and the fourth stages are 2,

0.5, 0.5, 1, respectively. Each delay of the differential delay

sequence DF = {1, 2, 3, 4} is applied to the TDC to measure

it sequentially one by one. After each measurement, the bin

corresponding to the measurement result is incremented. In

Figure 2. Basics.

case of the ideal TDC, the length of the bins bin0, bin1, bin2,

and bin3 become 1 after the four times measurement (Fig. 2

(a)). On the other hand, in case of the TDC with varied

delay, the bin of the first stage bin0 is incremented after the

measurement of the differential delays 1 and 2. The bin

of the 3rd stage bin2 is incremented after the measurement

of the differential delay 3. The bin of the 4th stage bin3 is

incremented after the measurement of the differential delay

4. Consequently the length of the bin0, bin1, bin2, and

bin3 are 2,0,1,1, respectively after the four times measure-

ment. As a buffer delay of a stage is larger, the length of

the bin of the stage is longer. After sufficient measurement

times with the delay sequence following uniform distribution

whose lower limit is 0 and upper limit is 4, the length of

the bin is proportional to the amount of the delay of the

stage. Accordingly the variation of delay of the buffer of

each stage can be estimated from the constructed histogram.

B. TDC with Stochastic Self-Calibration Function Using
Two Ring Oscillators

Figure 3 shows the 8 stage TDC with stochastic self-

calibration function using two ring oscillators. The upper

part is TDC, the bottom part is the sub-circuit for the con-

struction of the histogram. The input START is connected

to an input of the 2-to-1 multiplexer MUX0. The output

of MUX0 is connected to the left-side edge of the delay

line. The right-side edge of the delay line is feed-back to

another input of MUX0 through an inverter. The delay of

the buffer of the ith stage (0 ≤ i ≤ 7) is τi, and the delay

of the inverter is τu.

The input STOP is connected to an input of the 2-to-1
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Figure 3. 3-bit TDC with stochastic self-calibration function using two
ring oscillators.

multiplexer MUX1. The output of MUX1 is connected to

the left-side edge of the clock line. The right-side edge of

the clock line is feed-back to another input of MUX1 through

eight buffers and an inverter. The delay of the buffers is τ ,

and the delay of the inverter is τb. The input CAL controls

the MUX0 and MUX1. When CAL = 1, the upper delay line

and the lower clock line are configured to the ring oscillators

for the calibration. The outputs of the flip flops are connected

to the corresponding inputs of CNV Q0−Q7. The outputs

of CNV O0 − O7 are connected to the inputs of ENC and

the inputs of the counters CNTi (0 ≤ i ≤ 7) which count

the number of the value 1 to construct the histogram.

C. Calibration Sequence

In the stochastic calibration, the set of the differential

delay generated by the two ring oscillators is measured

consecutively with TDC. From the measurement result,

the histogram is constructed to estimate the variation of

the buffers on the delay line of the TDC. The calibration

sequence is as follows.

Step 1 Set CAL to 0. Initialize counter values to 0.

Step 2 Set CAL to 1. Initialize i← 1. Then the calibration

starts.

Step 3 Execute ith measurement.

Step 4 When i is equal to the number of the iteration of

the delay measurements NMEAS , finish. Otherwise

increment i and go to Step 3.

D. Characteristics of the differential delay sequence

The characteristics of the differential delay sequence

depends on the cycle of the upper ring oscillator T0, the one

of the lower ring oscillator T1, and the initial differential

delay d when the calibration starts. Figures 4-6 show

some differential delay sequences. As shown in Fig. 4 and

Fig. 5, the difference of T0 and T1 gives the difference of

the differential delay sequence. As shown in Fig. 6 the

differential delay sequence has only two values, 5 and 10

when T0 = 10 and T1 = 5. The cycle T0 is the multiple

of T1. In other word, the frequency of the upper ring

oscillator is a sub-harmonic frequency of that of the lower

ring oscillator. This phenomenon is quite similar to the

bunching effect of the random repetitive sampling mode of

digital oscilloscope [14]. The difference of the parameters

influences on the calibration time and the convergence of

the calibration.
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Figure 4. Differential delay sequence (NSTG = 8, T0 = 11.93, T1 =
2.11, d = 5).
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Figure 5. Differential delay sequence (NSTG = 8, T0 = 11.93, T1 =
3.11, d = 5).

IV. SIMULATION RESULTS

This section verifies the stochastic self-calibration using

two ring oscillators with the simulator implemented with C

language quantitatively.

Subsection IV-A explains the simulation setup. The

characteristics of the calibration depend on the cycle of

the upper ring oscillator and the cycle of the lower ring

oscillator. Subsection IV-B evaluates the oscillation cycle

specification. The characteristics of the calibration depend

on the initial differential delay, too. Subsection IV-C

evaluates the initial differential delay specification. The
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Figure 6. Differential delay sequence (NSTG = 8, T0 = 10, T1 = 5, d =
5).

proposed calibration requires the dedicated counters for the

construction of the histogram. The extra area depends on the

bit length. In Subsection IV-D, we estimate the bit length

of the counters.

A. Simulation Setup

In this evaluation, we assume that the ideal delay of a

buffer on the delay line is 1. We add variations following

gaussian distribution to the buffers. The 3σ of the distribu-

tion is 10%. The number of the stage NSTG is 8, 16, 32, 64,

128. The differential non-linearity error is defined. When

bij is the length of the bin of the ith stage after j times

measurement, the differential non-linearity error of stage

i (1 ≤ i ≤ NMEAS − 1) after j times measurement dnlij
is expressed as the following formula.

dnlij =
τi∑NSTG−2

i=1 τi
− bij∑NSTG−2

i=1 bij
(1)

The differential non-linearity error after jth measurement

DNLj is expressed as the following formula.

DNLj = max(|dnl1j |, · · · , |dnl(NMEAS−2)j |) (2)

In the equations (1) and (2), the first and the last stages

are ignored because the length of the histogram of these

stages can be illegal value. As calibration process proceeds,

DNLj is convergent within the target error DNL. When

DNLNMEAS−1 > DNL, the calibration is fail, otherwise

the calibration is success. When multiple calibrations are

performed, the convergent probability to a target error DNL
is defined as follows.

PE(DNL) = NSCAL/NCAL × 100.0

, where PE(DNL) is the convergent probability, NCAL

is the calibration times, and NSCAL is the times that the

calibration is succeeded. Let NE(TDC, T0, T1, d,DNL) be

the required measurement times where TDC is the target

TDC, the T0 and T1 are the cycles of the upper and

-0.01

-0.008

-0.006

-0.004

-0.002

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0  1  2  3  4  5  6  7

d
n
l

Stage

Before cal.
After cal.

Figure 7. dnl error distribution of an 3-bit TDC before calibration and
after calibration (T0=11.93, T1 = 2.11, d=0, NE=699).

the lower ring oscillators respectively, d is the initial dif-

ferential delay, and DNL is the target error. When the

calibration is fail, NE(TDC, T0, T1, d,DNL) = 0. The

NE(TDC, T0, T1, d,DNL) is obtained with the following

routine.

Step 1 Initialize i← 1.

Step 2 Execute ith measurement.

Step 3 Calculate DNLi.

Step 4 If e > DNLi, the value of NE is i. If i is

equal to NMEAS , the value of NE is 0. Otherwise,

increment i and go to Step 2.

The dnl error distribution of a 3-bit TDC before calibration

and after calibration is shown in Fig. 7.

The set of the prime cycle TPni of which integer part is

i is defined as follows.

TPni = {d|d = p/10n, 10n×i < p < 10n(i+1), p ∈ P, n ∈ N}
, where P is the set of prime numbers and n is the decimal

digit. The inverse of the prime cycle is defined as the prime

frequency. In this evaluation, n is set to 2. The influence

of RMS jitter is ignored for theoretical analysis.

B. Specification of Cycle of Lower Ring Oscillator

We evaluate the T1 specification on the following cases

of the combination of the cycles of the upper and the lower

ring oscillators.

Case1Both of T0 and T1 are prime cycles.

Case2T0 is multiple of T1.

Case3Arbitrary values of T0 and T1.

The maximum value of the differential delay generated by

the two ring oscillators is equal to the width of T0. There-

fore, T0 is fixed. The T1 is swept up in a range. Let TS1

be the set of the cycles of the lower ring oscillator. To

generate the differential delay sequence following uniform

distribution, T0 should be larger than the largest measureable

delay 1.1×NSTG. We decide the fixed value of T0 and TS1
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which is the set of T1 for the calibration on the above three

cases as follows.

Case1T0 = Tp0. The TS1 includes all the prime cycles

in the range between Tmin and Tmax.

Case2T0 = Tmax. The TS1 includes all the dividers in

the range between Tmin and Tmax.

Case3T0 = Tmax. The TS1 includes all the cycles in the

range between Tmin and Tmax.

The Tmin and Tmax are the upper and the lower limits of the

range, respectively. The cycle Tp0 is the maximum prime

cycle in the range.

Table I shows the parameter setup of this evaluation.

100 multiple TDCs (TDC0 − TDC99) are generated ran-

domly. With all the combination of T0 and T1 picked

up from TS1 the calibration is performed to calculate the

convergent probability on Case1, Case2, Case3 in each

TDC. The target error DNL is 1/1,024. The initial differ-

ential delay d is 0.

Table II shows the result. All the convergent probability

of Case1 is 100 %. All the convergent probability of Case2
is 0 %. The convergent probability is 100 % when both

of T0 and T1 are the prime cycles, while the convergent

probability is 0 % when T0 is a multiple of T1. In Case3,

the convergent probability increases as TSTG increases. It

means that the convergent probability is better as the number

of stages is larger when T1 is an element picked up from

TS1. When TSTG =128, PE(1/1024) is 77.7 %. It means

that the probability of the convergence of the calibration is

77.7 % when T0 = 132, and a lower cycle T1 is randomly

chosen from TS1. We conclude that 100 % convergence is

guaranteed when both of T0 and T1 are the prime cycles,

otherwise is not guaranteed.

Next we evaluate the specification of the required num-

ber of times of measurement for the convergence to the

target error. In this evaluation, TS1 = {T10, T11, · ·

Table I
PARAMETER SETUP OF EVALUATION OF SPECIFICATION OF T1 .

NSTG Tmin Tmax Tp0

8 2 12 11.93
16 2 18 17.89
32 2 36 35.93
64 2 68 67.93

128 2 132 131.87

Table II
CONVERGENT RATIO(d = 0, e = 1/1, 024).

Case
TSTG

8 16 32 64 128

Case1 100.0 100.0 100.0 100.0 100.0
Case2 0.0 0.0 0.0 0.0 0.0
Case3 37.5 44.0 57.1 75.9 77.7
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Figure 8. DNL-NEave specification (Case1).

·, T1(NTDC−1)}. When the combination of the cycles is a pair

of T0 and T1i(0 ≤ i ≤ NTDC−1), the required measurement

NEi is expressed as the following formula.

NEi =

⎧⎪⎨
⎪⎩
∑NTDC

j=0 NE(T0, T1j ,TDCi, d, e)/NSCAL

(NSCAL �= 0),

0 (NSCAL = 0)

, where NSCAL is the number of TDCs that calibrations are

convergent. The average number of the times of the delay

measurement NEave is expressed as the following formula.

NEave =

{∑NTDC

i=0 NEi/NSTDC (NSTDC �= 0),

0 (NSTDC = 0)

, where NSTDC is the sum of TDC that NEi �= 0. The

target error DNL is 1/128, 1/256, 1/512, 1/1,024. The initial

differential delay d is 0. Figure 8 represents the DNL-

NEave specification in case of Case1. The horizontal axis is

DNL. The vertical axis is NEave. This graph demonstrates

that approximately NEave increases in proportion to the

decrease of DNL. As NSTG increases, the curves move up

to the vertical direction.

Figure 9 shows the DNL − NE specification. The T0

is fixed to 12.0. Four T1s are randomly chosen from

TS1. Then the four curves a, b, c, d are plotted. The

number of the maximum delay measurement times NMEAS

is 10,000. Accordingly, if a curve sticks to NMEAS , then the

calibration fails on the point. The curve a fails to converge

in DNL = 1/1, 024. The curve b fails to converge in

DNL = 1/256, 1/512, 1/1, 024. The curves c and d succeed

to converge in DNL = 1/128, 1/256, 1/512, 1/1, 024. Like

this, the variance of the curves is large when T0 and T1 are

not prime cycles.

C. Specification of Initial Differential Delay

The characteristics of the differential delay sequence

depend on the initial differential delay. We evaluate the

d specification of the required measurement NE . With the

pair of T0 and T1 which guarantees the convergence when

144144



 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

1/128 1/256 1/512 1/1024

N
E

DNL

curve a (T0=12.00,T1=2.58)
curve b (T0=12.00,T1=2.55)
curve c (T0=12.00,T1=2.46)
curve d (T0=12.00,T1=2.36)

Figure 9. DNL-NE specification (Case2).

d = 0, we perform the multiple calibrations consecutively

with sweeping up d from 0 to T0. Figure 10 shows the

curve of d specification when TSTG = 64, Tp0 = 67.93, and

T1 is 2.11. The horizontal axis is d. The vertical axis is

the required measurement times NE for the convergence to

DNL = 1/128, 1/256, 1/512, 1/1, 024. This result shows

that NE does not depend on d.
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Figure 10. d-NE specification (NSTG = 64, T0 = 67.93, T1 = 2.11).

D. Bit Length of Counters

When 3σ of the distribution of the buffer delays is 0.1,

the required bit length of the counter of each stage LCNT is

expressed as the following formula.

LCNT = log2�1.1×NE/NSTG�.
According to the result of the value of NEave shown in

Fig. 8, the required bit length of each counter is calcu-

lated. The target error DNL is 1/1,024. Table III shows

the result. The required bit length is around 5-7 bit. The

required bit length tends to decrease as NSTG increases.

V. CONCLUSIONS

In this paper, we have analyzed the TDC with the

stochastic self-calibration using two ring oscillators. Here,

we summarize this study.

1) The histogram of each bin converges to the corre-

sponding buffer delay value in a well-behaved manner;

the DNL measurement error decreases monotonically

in proportion to the increase of the number of the times

of the measurement.

2) Accordingly, the required number of the measurement

times is in proportion to the required accuracy of the

calibration.

3) When both of the frequencies of the two ring oscil-

lators are not the prime frequencies, the convergence

of the calibration is not guaranteed. The simulation

results show that the convergent probability is 77.7 %

when NSTG = 128. In other words, 22.3 % are not

convergent.

4) According to the above results, we get the following

conclusions.

• Both of the frequencies of the two ring oscillators

should be the prime frequencies.

• When both of the frequencies are the prime fre-

quencies, we estimate the required number of the

times of measurement from the target error DNL.

Sometimes, the ring oscillators are infected with the

injection lock [15]. In this paper, we ignore this effect

for theoretical analysis. We will consider it in the future

work. The two frequency generators are implemented by

the two ring oscillators. However the waveform include

considerable amount of jitter. It gives bad influences on the

convergence of the calibration. We will consider the strategy

to reuse the existing PLL with lower jitter as a frequency

generator in a future work. A SOC usually includes scan

design in its logic block. If TDC is implemented around the

logic block, we can reuse the scan chains as the counters to

reduce the extra area.
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