A Single Supply Bootstrapped Boost Regulator for Energy Harvesting Applications

Zachary Nosker¹ Yasunori Kobori¹ Haruo Kobayashi¹ Kiichi Niitsu² Nobukazu Takai¹ Tetsuji Yamaguchi² Eiji Shikata² Tsuyoshi Kaneko³ Kimio Ueda⁴

¹Division of Electronics and Informatics, Gunma Univ, 1–5–1 Tenjin-cho Kiryu, Gunma 376-8515 Japan ²Department of EECS, Nagoya Univ, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 Japan ³AKM Technology Corporation, 1-9-1 Ichibancho, Aoba-ku, Sendai, Miyagi 980-0811 Japan ⁴Asahi Kasei Microdevices, 1-105 Kanda Jinbocho, Chiyoda-ku, Tokyo 101-8101 Japan

Charge Pump Startup Simulation Circuit Efficiency Introduction 100 350- V_{CP-OSC 1. Energy harvesting systems capture power 99 from ambient sources 98 **E** 150 Examples: solar, vibrational, thermal transducers Efficiency (%) 96 95 94 93 2. Our approach targets real-world applications Operates from a single input voltage -50.0 • Only requires 3 external components (C_I, C_O, L) 400-

- Efficiency and load range maximized
- Starts up with very low input voltage
- \blacktriangleright Target \rightarrow low-power Micro-Controller system

Energy Harvesting Block Diagram

The proposed circuit does not require an energy storage device (battery)

Proposed Circuit – Design Specifications

1. Bootstrapped boost regulator

Steady State Simulation

Efficiency Comparison

Charge Pump Test Chip

- Can startup from input voltage below $V_{t(NMOS)}$
- Works down to $V_{IN} = 240 \text{mV}$
- 2. Efficiency > 95%
 - Low $I_Q \approx 15 \mu A$
 - Low conduction/switching losses

Overall System Block Diagram

3. Output Load > 5 mW

Circuit Calculations

Inductor current equation **(v**)

$$\tilde{u}_L(t) = \begin{cases} rac{V_I}{L}t, & t_0 < t \leq t_1 \\ I_P - rac{V_O - V_I}{L}(t - t_1), & t_1 < t \leq t_2 \end{cases}$$

Output voltage ripple

Chip photomicrograph

Lab bench setup

t11802471@gunma-u.ac.jp

Test Chip Data

Startup Charge Pump Schematic

1. Native NMOS, $C_1 = 5$ pF, $C_2 = 40$ pF 2. Values optimized to startup main switches

 $\Delta v_O = \frac{1}{C_O} \int i_L(t) \, \mathrm{d}t = \frac{I_P^2 L}{2C_O(V_O - V_I)}$

- Maximum load current $I_{O(max)} = t_{on} \frac{V_{\bar{I}}}{2LV_{O}}$
- Smaller inductor \rightarrow larger peak current Larger inductor current \rightarrow more losses Optimum inductor value selected

VIN (mV)

Conclusion

- 1. Introduced bootstrapped boost for EH applications
- 2. Better performance than previous works
 - Higher efficiency
 - Extended load range
- 3. Only requires 3 external components
 - Input capacitor, output capacitor, inductor
 - No external energy storage components

Zachary NOSKER (Gunma University)

www.el.gunma-u.ac.jp/~kobaweb/