Noise-Shaping Cyclic ADC Architecture

Yukiko Arai¹, Yu Liu¹, Haruo Kobayashi¹, Tatsuji Matsuura¹, Osamu Kobayashi², Masanobu Tsuji², Masafumi Watanabe², Ryoji Shiota², Noriaki Dobashi², Sadayoshi Umeda², Isao Shimizu¹, Kiichi Niitsu³, Nobukazu Takai¹, Takahiro J. Yamaguchi¹ ¹ Department of Electronic Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu 365-8515, Japan ² Semiconductor Technology Academic Research Center ³Nagoya University

Real world signals are analog

with simple circuitry

ADC

ΔΣADC

60 ns

1/2/3/4

z ns

× 1.5 MDAC settling time

×2 over sampling

31 32

Power Reduction

- Pipeline of cyclic ADC and $\Delta\Sigma$ ADC.
- Noise-shaping of cyclic ADC quantization error by $\Delta\Sigma$ ADC • High resolution, medium speed, low power \rightarrow Power, chip area efficient
- Reconfigurable for different combinations of speed, precision, and power