2014 IEEE International Test Conference

Low-Distortion Signal Generation for ADC Testing

Fumitaka Abe, Yutaro Kobayashi Kenji Sawada, Keisuke Kato Osamu Kobayashi, Haruo Kobayashi *Gunma University*

STARC

Research Objectives

- Use an Arbitrary Waveform Generator (AWG) as low-cost low-distortion signal source for ADC testing
- Validate our 3rd-harmonic-cancelling phase-switching signal generation technique
- Perform analysis, simulation, and experiments using AWGs for ADC testing

- Background to this research
- Proposed solution
- Problems with proposed solution
- Remedy 1
- Remedy 2
- Experimental results
- Conclusions

- Background to this research
- Proposed solution
- Problems with proposed solution
- Remedy 1
- Remedy 2
- Experimental results
- Conclusions

Background to this Research

- ADCs are important part of mixed-signal SOCs.
- Need a low-cost, low-distortion signal source for ADC linearity testing.
- #1: Use existing AWGs in testers low cost
- # 2: Develop a technique that doesn't require identification of AWG nonlinearity, just a DSP program change.

Problem with Conventional Method

ADC HD3 cannot be measured accurately. Low quality test

Research Objective

High quality test

- Background to this research
- Proposed solution
- Problems with proposed solution
- Remedy 1
- Remedy 2
- Experimental results
- Conclusion

Conventional Signal Generation with AWG

AWG sampling frequency: $f_s(AWG) = 1/T_s$

 $\mathbf{X} = A\cos(2\pi f_{in}nT_s)$

DAC has 3rd order nonlinearity

<u>11/41</u>

Proposed Signal Generation with AWG

AWG sampling frequency : $f_{s(AWG)} = 1/T_{s(AWG)}$

 $X_0 = 1.15Acos(2\pi f_{in}nT_s - \pi/6)$ $X_1 = 1.15Acos(2\pi f_{in}nT_s + \pi/6)$

HD3 is cancelled

 $\Theta = \pi/3$

T_{s(AWG)}

X₀

 \mathbf{X}_{1}

Principle of 3rd Harmonics Cancellation

Two waves with phase difference π are cancelled 13/41

Conventional and Phase Switching Signals

Phase Switching

- Research background
- Proposed solution
- Problems of proposed solution
- Remedy 1
- Remedy 2
- Experimental results
- Conclusion

Conditions of HD3 Cancellation in Cascaded System

HD3's are not cancelled if attenuate spurious at $f_s/2 - f_{in}$.

Problem of Phase Switching Signal Generation

Model for Theoretical Analysis

AWG Input with Phase Switching

$$D_{in}(nT_s) = \begin{cases} A \cdot \sin(2\pi f_{in}nT_s - \frac{\pi}{6}) & \text{n: odd} \\ A \cdot \sin\left(2\pi f_{in}nT_s + \frac{\pi}{6}\right) & \text{n: even} \end{cases}$$

AWG Nonlinearity Model

$$Y(nT_s) = a_1 D_{in}(n) + a_3 \{D_{in}(n)\}^3$$

ADC Nonlinearity Model

 $Z(n) = b_1 Y(nT_s) + b_3 \{Y(nT_s)\}^3$

For simplicity fs(AWG)=fs(ADC)

w/o LPF
$$\xrightarrow{D_{in}(nT_s)}$$
 AWG $\xrightarrow{Y(nT_s)}$ ADC $\xrightarrow{Z(n)}$

AWG Output

Direct Application of Phase Switching Signal ADC output *Z*(*n*) components

 α_{0} $\alpha_{-1}\cos\left(2\pi(\frac{f_{s}}{2}-f_{in})nT_{s}\right)$ $\alpha_{1}\cos\left(2\pi(\frac{f_{s}}{2}+f_{in})nT_{s}\right)$ $\alpha_{-3}\cos\left(2\pi(\frac{f_{s}}{2}-3f_{in})nT_{s}\right)$

 $\beta_{1} \sin(2\pi f_{in}nT_{s}) \qquad \text{signal}$ $\beta_{3} \sin(2\pi 3 f_{in}nT_{s}) \qquad \text{HD3}$ $\beta_{-1} \sin(2\pi (f_{s} - f_{in})nT_{s}) \qquad \text{HD3}$ $\beta_{-3} \sin(2\pi (f_{s} - 3f_{in})nT_{s}) \qquad \text{HD3}$ $\beta_{-5} \sin(2\pi (f_{s} - 5f_{in})nT_{s}) \qquad \text{HD3}$

By calculation

 $\beta_3 = \beta_{-3}$

 $3f_{in}$ and $f_s - 3f_{in}$ components are cancelled CANNOT measure ADC HD3.

- Research background
- Proposed solution
- Problems of proposed solution
- Remedy 1
- Remedy 2
- Experimental results
- Conclusion

AWG Output and Low Pass Filtering

 $Y'(nT_s) = a_1 D_{in}(n) + a_3 \{D_{in}(n)\}^3$

= $P\sin(2\pi f_{in}nT_s)$

+
$$\mathbf{q} \operatorname{Q} \cos\left(2\pi \left(\frac{f_s}{2} - f_{in}\right)nT_s\right)$$

+ $\mathbf{r} \operatorname{R} \cos\left(2\pi \left(\frac{f_s}{2} - 3f_{in}\right)nT_s\right)$

0 < q < 1, 0 < r < 1: spurious attenuation

w/LPF
$$\xrightarrow{D_{in}(nT_s)}$$
 AWG $\xrightarrow{P'(nT_s)}$ ADC $\xrightarrow{Z(n)}$

Application of Phase Switching and LPF ADC output Z(n) components

signal α'_0 $\boldsymbol{\beta}'_1 \sin(2\pi f_{in} nT_s)$ $\alpha'_{-1}\cos\left(2\pi(\frac{f_s}{2}-f_{in})nT_s\right)$ $\boldsymbol{\beta}'_{3}\sin(2\pi 3f_{in}nT_{s})$ $\boldsymbol{\beta}'_{-1}\sin(2\pi(f_s-f_{in})nT_s)$ HD3 $\alpha'_{1}\cos\left(2\pi(\frac{f_{s}}{2}+f_{in})nT_{s}\right)$ $\beta'_{-3}\sin(2\pi(f_s-3f_{in})nT_s)$ $\alpha'_{-3}\cos\left(2\pi(\frac{f_s}{2}-3f_{in})nT_s\right)$ $\boldsymbol{\beta}'_{-5}\sin(2\pi(f_s-5f_{in})nT_s)$ $|\beta'_3| \gg |\beta'_{-3}|$ By calculation $3f_{in}$ and $f_s - 3f_{in}$ components are NOT cancelled ADC HD3 can be measured.

Spurious Attenuation Effect

AWG output and low pass filtering $Y(nTs) = P sin(2\pi f_{in}nT_s)$

+
$$\left[q \cos \left(2\pi \left(\frac{f_s}{2} - f_{in} \right) n T_s \right) \right]$$

+ $r R \cos \left(2\pi \left(\frac{f_s}{2} - 3f_{in} \right) n T_s \right)$
+ $r R \cos \left(2\pi \left(\frac{f_s}{2} - 3f_{in} \right) n T_s \right)$
Accurate HD3 measurement

Spurious Reduction at $f_{s(AWG)}/2 - f_{in}$

Spurious reduction at fs/2-fin	HD3 m	neasurement Error
10dB		1%
20dB	\rightarrow	0.1%

For accurate ADC HD3 measurement attenuate the spurious at $\frac{f_{s(AWG)}}{2}-f_{in}$

- Research background
- Proposed solution
- Problems of proposed solution
- Remedy 1
- Remedy 2
- Experimental results
- Conclusion

When Spurious @ $f_{s(AWG)}/2 - f_{in}$ is Within $f_{s(ADC)}/2$

ADC HD3 can NOT be measured accurately

When Spurious @ $f_{s(AWG)}/2 - f_{in}$ is Beyond $f_{s(ADC)}/2$

ADC HD3 can be measured accurately

Conditions for Accurate ADC HD3 Measurement

- Research background
- Proposed solution
- Problems of proposed solution
- Remedy 1
- Remedy 2
- Experimental results
- Conclusion

ADC 3rd Harmonic Measurement Diagram

ADC test signal generation

- Conventional
- Phase switching

Satisfying Remedy 2

Experimental Environment for ADC Testing

Analog LPF Design for ADC Testing

LPF Implementation

for HD3 reduction

fc=1MHz fc=2MHz fc=2.7MHz fc=3.7MHz

for fs/2-fin spurious reduction

LPF Evaluation with Frequency Response Analysis

Measured Waveforms of ADC Input and Output

Comparison of Conventional and Proposed Methods

True ADC HD3: -94.6dBFs

Conventional method Measured HD3: -88.1dBFs Error 6.8%

Proposed method Measured HD3: -92.6dBFs Error 2.1%

ADC HD3 Measurement Results

- Research background
- Proposed solution
- Problems of proposed solution
- Remedy 1
- Remedy 2
- Experimental results
- Conclusion

Conclusions

Low distortion sine signal generation Without AWG hardware modification Just AWG program change and a simple analog LPF Verified with AWG (Agilent 33220) 6 samples of 12bit SAR ADC (AD7356) Greatly improved quality of ADC Linearity testing at virtually no extra cost.

Future Work

 Generalization to other types of low distortion sinusoidal signal generation - HD2, HD2&HD3 cancellation for 1-tone - IMD3 cancellation for 2-tone • We have partially verified these. Detailed theoretical analysis, simulations, and experiments are underway.