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Abstract — This paper describes a method of generating 

low-distortion sinusoidal waves using an arbitrary 

waveform generator (AWG), and experimental results of 

using such a generator for ADC dynamic performance 

testing. With this proposed method, 3rd order harmonics of 

the generated signal are suppressed simply by changing the 

AWG program (or waveform memory contents)—AWG 

nonlinearity identification is not required—and spurious 

components, generated far from the signal band, are 

relatively easy to remove using an analog filter; our 

theoretical analyses, simulations, and experiments showed 

that a simple passive LC analog filter (with relaxed 

requirements compared to the one for direct HD3 removal) 

is sufficient. Our ADC testing results—using signals 

generated by an AWG with the proposed algorithm, and a 

simple passive LC LPF—show measurement errors (caused 

by 3rd order harmonics generated by AWG DAC 

nonlinearity)  half that of previous algorithms. 

Keywords — ADC testing, Low distortion signal generation, 

Arbitrary waveform generator, Third-order harmonics 

 

1. Introduction 
LSI production testing is becoming increasingly important in 

the semiconductor industry, because LSI testing costs are 

increasing while the cost of silicon is decreasing. ADCs are 

particularly important key components in mixed-signal SoCs, 

and here we consider testing of such ADCs, especially 

dynamic performance testing. 

Automatic Test Equipment (ATE) is rather expensive, so 

semiconductor manufacturers tend to use the same ATE for 

years. However device under test (DUT) performance is 

improving rapidly, so it is important to be able to precisely test 

or measure the performance of future DUTs using today’s 

(relatively low performance) ATE. 

   An AWG consists of a DSP (or waveform memory) and a 

DAC. We can use AWGs to generate arbitrary analog 

waveforms simply by changing the DSP program, and many 

ATEs use AWGs for their flexibility. However, due to AWG 

nonlinearities, sinusoidal signals generated by AWGs include 

harmonics that degrade the accuracy of ADC testing when 

AWGs are used as ADC input signal sources. 

The purpose of this paper is to validate in depth— 

experimentally and theoretically—the effectiveness of our 

method [1][2] for generating low-distortion (especially low 3rd 

harmonic distortion) signals simply by changing the AWG 

program, without AWG nonlinearity identification, as well as 

to measure the improvement in accuracy of ADC linearity 

testing when using the AWG signals as inputs to ADCs. 

We also explain how to apply our proposed low distortion 

signals to ADC output 3rd harmonic measurement. We have 

found by theoretical analyses, simulations, and experiments 

that the 3rd order distortion of an ADC under test is NOT 

measured accurately if the phase-switching technique 

described below is used to apply signals directly to the ADC, 

because 3rd order harmonics of the ADC are cancelled at the 

ADC output. However we show by theoretical analyses, 

simulations, and experiments that this problem can be solved 

just by using a simple passive LPF with relaxed requirements 

compared to the one for direct HD3 removal. Test results for 

our ADC (12bit SAR ADC, AD7356, 6 samples) using signals 

generated by an AWG (Agilent 33220A) with our proposed 

algorithm and a simple passive LC LPF show that errors in 3rd 

order harmonic measurements due to ADC nonlinearity are 

half that for previous algorithms. 

  Our phase-switching technique is explained in Section 2, and 

the ADC testing conditions are discussed in Section 3. 

Experimental results are presented in Section 4, and the key 

points of our work are summarized in Section 5. Appendices I, 

II, and III show some more theoretical analyses and simulation 

results. 

Note that in this paper, we have described theoretical 

analyses, simulation, and experiments covering both AWG 

signal generation and ADC testing. The previous works in [1-

5] considered only AWG signal generation, and not ADC 

testing using the generated signals; In other words, this paper 

describes problems for ADC testing with the proposed signal 

generation [1] and its countermeasures. Another low distortion 

sine signal generation method using an AWG, proposed in [6], 

requires precise identification of nonlinearity, which our 

method does not require. Similar techniques for canceling 

harmonics in power amplifiers, proposed in [7], cannot be 

applied to the AWG without hardware modification. 

 

2. Test signal generation for ADC testing 

2.1 Conventional test signal generation 

 We consider the case that 3rd order distortion is dominant in 

the AWG, whose internal DAC has 3rd order distortion. We 

use a simple model as follows: 

 𝐴𝑜𝑢𝑡(𝑛𝑇𝑠(𝐴𝑊𝐺)) = 𝑎1𝐷𝑖𝑛(𝑛) + 𝑎3𝐷𝑖𝑛(𝑛)3. (1)  

A conventional ADC test signal generated in the DSP is a 

sinusoidal signal expressed in equation (2). However the 

output of the AWG includes 3rd order harmonics because the 

DAC in the AWG has 3rd order distortion characteristics. Fig.1 

shows this conventional test signal generation. 

 𝐷𝑖𝑛(𝑛) = 𝑋(𝑛) = 𝐴・cos(2𝜋𝑓𝑖𝑛𝑛𝑇𝑠(𝐴𝑊𝐺)). (2)  
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Fig.1 Conventional method of sinusoidal signal generation 

using an AWG. 

 

2.2 Low-distortion signal generation with phase switching  
We consider the case that 3rd order distortion as per equation 

(1) is dominant in the AWG. We use the same AWG, but 

change the DSP program as per equation (3) below to cancel 

the 3rd harmonics caused by the 3rd order nonlinear term [1][2]. 

 

 
𝐷𝑖𝑛(𝑛) = 

𝑋0(𝑛) = 1.15𝐴・cos(2𝜋𝑓𝑖𝑛𝑛𝑇𝑠(𝐴𝑊𝐺) −
𝜋

6
)

𝑋1(𝑛) = 1.15𝐴・cos(2𝜋𝑓𝑖𝑛𝑛𝑇𝑠(𝐴𝑊𝐺) +
𝜋

6
).
 

 
(3) 

 

Here, 𝑋0(𝑛) is used when n is an even number, also 𝑋1(𝑛) is 

used when n is an odd number.  𝑋0  and 𝑋1  have the same 

frequency but they differ in phase by π/3.  

  

 We call the signal generated by the algorithm in equation 

(3) a phase-switching signal (Fig.2). The DSP output signal 

𝐷𝑖𝑛  consists of 𝑋0  and 𝑋1 , and interleaves them every one 

clock cycle. This signal configuration cancels 3rd order 

harmonics caused by the following DAC: 

 

  
Fig.2 A phase-switching sinusoidal wave generation technique. 

  

We have to set the amplitude of the phase-switching signal 

1.15 times larger than for the conventional method so that the 

fundamental power of the phase-switching signal is equal to 

that for the conventional method. (However, as explained later, 

if a simple analog LPF is employed, the amplitude of the 

phase-switching signal needs to be only 2% larger.)  Fig.3 

shows both conventional and phase-switching 𝐷𝑖𝑛  spectrums; 

we see that the phase-switching signal fundamental power is 

equal to that for the conventional case, and phase-switching 

causes spurious signals at fs(AWG)/2 − fin  whose power is 

4.8dB lower than that of the fundamental.  

Our simulations and experiments for the phase-switching 

technique in Fig.3 showed the 3rd order harmonics cancellation 

effect not only for the DAC in the AWG but also for the ADC 

under test. Namely, the conditions for cancelling 3rd order 

harmonics caused by ADC 3rd order distortion are shown in (a) 

and (b) as follows: 

 

 
Fig.3 Spectrums for conventional and phase-switching signals 

Din from DSP or waveform memory AWGs. 

 

Conditions: 

(a) Spurious@(
fs(AWG)

2
− fin) generation 

(b) (Spurious@
fs(AWG)

2
− fin power) −

(Fundamental Wave@fin power) = −4.8dB. 

 

In this case the 3rd order distortion of the ADC cannot be 

measured because it is cancelled at the ADC output, and in the 

following sections we will describe countermeasures. 

 

2.3 Test signal generation with an AWG (Agilent 33220A) 

Our experiments showed the effectiveness of our “phase-

switching” 3rd order harmonic reduction technique for 

sinusoidal signal generation. Fig.4 and Fig.5 show that for 

𝑓𝑖𝑛 = 200𝑘𝐻 , 𝑓𝑠(𝐴𝑊𝐺) = 10𝑀𝐻𝑧, the phase-switching signal 

reduces the power of the 3rd harmonic at 600kHz, but 

generates a spurious signal at fs(AWG)/2 − fin; in other words, 

the spurious signal at fs(AWG)/2 − fin suppresses the 3rd order 

harmonics. We call this function distortion shaping [1][2], 

which is similar to but different from noise shaping; that is, 3rd 

order harmonics near the signal band (which may be difficult 

to remove with an LPF) are suppressed, while spurious signals 

are generated far from the signal band (and are relatively easy 

to attenuate with an LPF). 

 

 
Fig.4 Output signal waveforms of conventional and phase-

switching signals generated by Agilent 33220A. 

 

Complete cancellation is not realized in Fig.5 with the phase-

switching technique; this is because one of the cancellation 

conditions of (a), (b) is not completely satisfied. 
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Fig.5 Output signal spectrums of conventional and phase- 

switching signals generated by Agilent 33220A. 

 

2.4 3rd order harmonic cancellation principle  

Here we show that why the 3rd order harmonics caused by the 

AWG are suppressed by the phase-switching technique [1][2]. 

Actually both conventional and phase-switching techniques 

generate 3rd order harmonics due to AWG 3rd order distortion, 

and their phases are multiplied by 3. Then the phase difference 

of π/3  between 𝑋0  and 𝑋1  changes the phase difference 

between  𝑋0′ and 𝑋1′by π; and as a result the 3rd order terms 

𝑋0′ and 𝑋1′ are cancelled. Fig.6 shows the 3rd order harmonic 

generation and cancellation mechanisms. 

 

 
Fig.6 Principle of 3rd order harmonic cancellation using the 

phase-switching technique. 

 

2.5 Limitations of the phase-switching technique 

The phase-switching technique uses two sinusoidal waves 

shown in equation (3) and Fig.2. On the other hand, the 

conventional signal is one sinusoidal signal (equation (2) and 

Fig.1). Thus the number of sampling points per one sinusoidal 

signal period included in the phase-switching is half that for 

conventional sinusoidal signals; as a result, the phase-

switching sampling frequency is equivalently reduced by half. 

For this reason, by Shannon’s sampling theorem, for the 

phase-switching technique the range of acceptable sinusoidal 

wave frequencies for 𝑓𝑖𝑛  is half that for the conventional 

sinusoidal input. 

   The other limitation is that this technique is only adequate 

for low frequencies but hard to realize in mid and high 

frequencies due to the challenge of getting the fine time 

resolution to sample the sine wave and the shifted sine wave at 

the same time. 

 

3. Required conditions for phase-switching spurious 

signals for ADC dynamic performance testing 

3.1  Measurement of 3rd harmonics caused by ADC 

nonlinearity 

We here consider ADC dynamic performance testing—
measurement of the level of 3rd order harmonics in the ADC 

output signal—using the proposed phase-switching signal. 

This phase-switching signal includes only a low level of 3rd 

harmonics (Fig.3), so the 3rd order harmonics in the ADC 

output signal are mainly due to ADC 3rd order distortion. 

However the phase-switching spurious at fs(AWG)/2 − fin  is 

also inputted to the ADC under test, and thus we have to 

consider its influence.   

Remember that the spurious at fs(AWG)/2 − fin has a 3rd order 

harmonic suppression effect. When the phase-switching signal 

including spurious at fs(AWG)/2 − fin  is also inputted to an 

ADC, its output signal may be lower than the actual 3rd order 

harmonics power, because this spurious at fs(AWG)/2 − fin 

suppresses 3rd order harmonics caused by the 3rd order 

distortion of the ADC; hence in this case the 3rd order 

nonlinearity of the ADC can NOT be measured accurately.  

Here we introduce two desirable conditions for accurate 3rd 

order harmonic measurement with the phase-switching signal.  

Conditions: 

(c) (
fs(AWG)

2
− fin) >

fs(ADC)

2
 

(d) Spurious@(
fs(AWG)

2
− fin) attenuation by 8 dB (or more). 

 

When conditions (c) and/or (d) are satisfied, accurate 3rd order 

harmonic measurement with the phase-switching signal is 

possible. It is desirable to satisfy both, but satisfying even only 

one makes measurement more accurate. 

fs(AWG)  and fs(ADC)  are sampling frequencies of the AWG 

and ADC respectively, while  fin  is the frequency of the 

sinusoidal wave generated by the AWG. Actually satisfying 

both conditions (c) and (d) is not difficult; regarding condition 

(c),  fs(AWG) is usually higher than fs(ADC), and ADC testing 

systems have an analog LPF for anti-aliasing. This LPF may 

be sufficient to satisfy the above condition (d). The spurious at 

fs(AWG)/2 − fin  is relatively easy to suppress with the LFP 

because it is very far from the signal band. 

   First we will explain condition (c). If this condition is 

satisfied, the sampling theorem says that the phase-switching 

spurious at fs(AWG)/2 − fin  is not reproduced. So the phase-

switching spurious at fs(AWG)/2 − fin which has a cancellation 

effect is moved due to aliasing (Fig.7). We can assume that 

under condition (c) the phase-switching signal after sampling 

does not have the cancellation effect because the spurious does 

not exist at fs(AWG)/2 − fin . Condition (a), one of the 

cancellation conditions, is not satisfied by condition (c). 
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Fig.7 Phase-switching signal spurious @ fs(AWG)/2 − fin  is 

moved by the sampling theorem under condition (c). 

 

 
Fig.8 ADC input and output waveforms under condition (c). 

 

Furthermore, Fig.8 shows the input and output waveforms of 

an ADC with fs(AWG) = 10MHz, fin = 200kHz and fs(ADC) =

3.478261MHz. We see that the input and output waveforms 

are not equal because the spurious at fs(AWG)/2 − fin  is not 

reproduced; the cancellation effect of the phase difference π in 

Fig.6 does not occur inside the ADC. In other words, we can 

accurately measure 3rd order harmonics caused by ADC 3rd 

order distortion. 

 

 Next we will explain condition (d). Notice that both 

conditions (b) and (d) are not satisfied simultaneously. We 

have simulated and obtained the correlation between the 

spurious power at fs(AWG)/2 − fin  and 3rd order harmonic 

power. We show the simulation conditions and results in Fig.9 

and Fig.10 respectively.  

 

 
Fig.9 Simulation conditions for calculating attenuation of 

spurious at fs(AWG)/2 − fin  and 3rd order harmonic 

measurement error. 

 

  
Fig.10 Correlation between spurious power at fs(AWG)/2 − fin 

and 3rd harmonic power measurement error. Simulation 

results of Fig.9. 

 

We see in Fig.10 that attenuation of the spurious at fs(AWG)/

2 − fin  by 10dB, 20dB and 30dB leads to 3rd harmonic 

measurement errors of 1%, 0.1% and 0.01% respectively. This 

error can be significantly further decreased by satisfying 

condition (c) as well. 

 As described above, by satisfying both conditions (c) and (d), 

the 3rd order harmonic measurement error is less than 1%. It is 

expected that the arguments of this section also hold for IMD3 

measurement of two-tone signal generation with the phase-

switching technique [3][4]. See appendix III. 

 

3.2 Phase-switching signal amplitude  

We have set the amplitude of the phase-switching signal 15% 

larger than for the conventional signal in order to make the 

fundamental power equal to that in the conventional case. This 

over-amplitude of 15% can be reduced by attenuating spurious 

at fs(AWG)/2 − fin . Fig.11 shows the correlation between 

spurious at fs(AWG)/2 − fin  attenuation level and phase-

switching signal amplitude. Fig.11 shows that the phase-

switching amplitude error is about 3% when the spurious at 

fs(AWG)/2 − fin  is attenuated by 10dB. We see in Fig.11 that 

with sufficient attenuation of the spurious at fs(AWG)/2 − fin, 

this converges to the conventional signal amplitude.  

 

 
Fig.11 By attenuating the spurious, phase-switching signal 

amplitude approaches the conventional signal amplitude. 

 

Also, we see in Fig.12 that for the phase-switching signal, 

sufficient attenuation of the spurious at fs(AWG)/2 − fin results 

in convergence to the conventional signal amplitude and 

waveform. 
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Fig.12 Attenuation of phase-switching signal spurious at 

fs(AWG)/2 − fin  

 

 

4. ADC dynamic performance testing  

We have performed experiments with 12-bit SAR ADCs 

(AD7356, produced by Analog Devices Inc.). We have 

measured 3rd order harmonics included in the output of the 

AD7356 ADCs. The ADC input signals are generated by the 

conventional and phase-switching techniques shown in Fig.4 

and Fig.5. Here, the testing conditions are fs(AWG) =

10MHz ,  fin = 200kHz , fs(ADC) = 3.478261MHz ; these 

parameters satisfy the condition (c). Also we use LPFs as pre-

stage circuit of AD7356. Fig.13 shows the frequency 

characteristics of the LPFs measured by a Frequency Response 

Analyzer (NF Corporation FRA). We use a 5th order LC 

Butterworth LPF with cutoff frequency of fc=250kHz for 

attenuating 3rd order harmonics generated by Agilent 33220A 

(AWG). So, we can measure actual 3rd order harmonics 

generated by AD7356 (ADC) by using this LPF.  4th order LC 

Butterworth LPFs with several cut off frequencies are used for 

attenuating the phase-switching spurious at fs(AWG)/2 − fin . 

By using fc=1MHz, 2MHz, 2.7MHz, 3.7MHz, attenuation of 

spurious at fs(AWG)/2 − fin(4.8MHz) changes by 54dB, 30dB, 

17dB and 8dB respectively as shown in Fig.13. 

 
Fig.13 Frequency characteristics of LPFs to attenuate 3rd order 

harmonics generated by an AWG for ADC testing, and phase-

switching spurious @fs(AWG)/2 − fin 

We have measured 6 samples of AD7356 ADCs, and we 

observe their spectrums in Fig.14, Fig.15, and Fig.16. Fig.14 

shows the case of a conventional signal with a 5th order LPF 

with fc=250kHz; the measured 3rd order harmonics in Fig.14 

are actual 3rd order harmonics caused by AD7356 3rd order 

distortion. We consider this data (-94.6dBFs) as the reference. 

 
Fig.14 Output signal power spectrum of AD7356 using a 

conventional signal input with a 5th order LPF @fc=250MHz 

(that is, a very low distortion sinusoidal signal). 

 

Fig.15 shows the case using the conventional signal input with 

a 4th order LFP @fc = 1MHz, where the 3rd order harmonic 

power is -88.5dBFs (fundamental wave power is -6.94dBFs). 

Considering that the actual 3rd order harmonic power is 

­94.6dBFs in Fig.14, the measurement error is estimated as 

6.5%. On the other hand, Fig.16 shows the case using the 

phase-switching signal input with a 4th order LPF @fc=1MHz, 

where the 3rd harmonic power is -92.6dBFs (fundamental 

wave power is -7.09dBFs); the measurement error is 2.1%. 

 

 
Fig.15 Output signal power spectrum of AD7356 using a   

conventional signal input with a 4th order LPF @fc=1MHz. 

 

 
Fig.16 Output signal power spectrum of AD7356 using a 

phase-switching signal input with a 4th order LPF 

@fc=1MHz. 

 

In the same way we have measured and calculated 3rd 

harmonic measurement error of AD7356 for all 6 samples. 

Fig.17 shows the measurement results, where a “minus” 
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measurement error means that 3rd order harmonics are lower 

than the reference, while a “plus” measurement error means 

that 3rd order harmonics are higher than the reference. Note 

that a “plus” measurement error is physically reasonable; 

when it approaches zero, the testing quality is good. On the 

other hand, a “minus” measurement error is not acceptable; 

this is due to using the phase-switching technique without an 

LPF (the ADC 3rd order distortion of the DUT is cancelled). 

We also confirmed this effect by simulation. 

AD7356 (ADCs) 3rd order harmonic measurement accuracy 

is improved by using a phase-switching signal with a LPF for 

all 6 samples, which validates the effectiveness of our 

proposed technique. However, we have to consider the 

measurement results in Fig.17. For both the conventional 

method and phase-switching technique, the measurement error 

characteristic is almost flat between 8dB spurious at fs(AWG)/

2 − fin attenuation and 54dB. This means that attenuation of 

the spurious at  fs(AWG)/2 − fin  by 8dB is sufficient for 

measuring 3rd order harmonics generated by AD7356. So, we 

see that our phase-switching technique improves 3rd harmonic 

measurement accuracy by satisfying both conditions (c) and 

(d). However when just condition (a) is satisfied (that is, 

attenuation of spurious at fs(AWG)/2 − fin is zero), 3rd order 

harmonics caused by AD7356 are not measured accurately 

(results are smaller than actual harmonics) as per the data for 

sample 3 shown in Fig.17. 

Sample 3 has “minus” error @ 0dB attenuation. This means 

that ADC performance looks very good. Also, Sample 5 

shows zero error @ 0dB attenuation. However, this is also 

strange because with phase switching there are small amounts 

of 3rd harmonics but not zero. Therefore we have to attenuate 

spurious at fs(AWG)/2 − fin by about 8 dB to measure 3rd order 

harmonics of ADCs. The measurement errors coverage to 

some small value by attenuating spurious at fs(AWG)/2 − fin. 

 

5.  Conclusion 

This paper has described a low-distortion sinusoidal wave 

generation method with an AWG and experimental 

verification using it for ADC dynamic performance testing. 

We have the following observations: 

1) With the proposed method, 3rd order harmonics are 

attenuated just by changing the program or waveform 

memory contents of the AWG. 

2) Nonlinearity identification for the DAC inside the AWG is 

not required. 

3) We found that if the signal generated by the proposed phase 

switching algorithm without a LPF is directly applied to an 

ADC, its output signal does not contain the harmonics caused 

by ADC nonlinearity (the harmonics are cancelled); the ADC 

linearity cannot be tested accurately. 

4) However, by attenuating the spurious at fs/2 – fin by 8 dB 

(or more) with a simple analog LPF: by using a simple 

analog LPF the harmonics caused by ADC non-linearity 

appear at the ADC output; its linearity can be tested with the 

signal generated by the proposed method. 

5) The fundamental power of the sinusoidal signal generated 

by the proposed method without an analog LPF is attenuated 

by 15%; this may affect testing of the input dynamic range of 

the ADC under test. However, when an analog LPF as 

described in 4) is employed, it is attenuated only by 2% and 

hence this is not a problem. 

6) The maximum frequency generated by the proposed method 

is half that of conventional methods using an AWG with 

given sampling frequency fs. However, the rapid 

advancement of LSI technology means that DAC (AWG) 

sampling speed are increasing, but device mismatches (which 

cause DAC nonlinearity) are not improving, hence the 

proposed approach will be even more cost effective as LSI 

technology progresses in future.  

7) All of the above arguments were verified by experiments 

using the AWG (Agilent 33220A) and 6 samples of 12bit 

SAR ADCs (AD7356); the 3rd order harmonic measurement 

error is reduced by approximately half. 

8) ADC BIST research has been active such as [8, 9], though 

its practical application in industry is still controversial. If the 

proposed phase-switching method were used (with an on-

chip DAC and LPF) to generate the sinusoidal signals for the 

on-chip ADC testing, this would relax the LPF requirements 

and so facilitate ADC BIST implementation. 

 

 
Fig.17  3rd order harmonic measurement errors for AD7356. 

 

We have proposed and investigated a low-distortion signal 

generation method with an AWG for ADC testing [1, 2], and 

the contents described here demonstrate their effectiveness for 

practical use with experiments through AWG signal 

generation to ADC testing. 

We close this paper by remarking that we have also 

proposed and investigated the following signal generation 

methods with simulations and experiments [1-5], and we 
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expect that combining these algorithms with a simple analog 

LPF or BPF would improve ADC linearity testing quality: 

a) Low-distortion sinusoidal signal generation algorithms with 

techniques such as 2nd order harmonic cancellation, or both 

3rd and 5th order harmonic cancellation [1, 2].  

b) Two-tone signal generation algorithms with low IMD3 

using an AWG for telecommunication-use ADCs [3, 4]. 

c) Application of these algorithms to a delta-sigma DAC as 

well as to a Nyquist-rate DAC. 

According to our simulations and theoretical analysis, we have 

found that similar arguments hold in the above cases a), b) and 

c), and hence the proposed approach here seems valid in more 

general cases. Some results are shown in appendices II and III. 

We hope to report more details of this investigation elsewhere.  
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Appendix I 

This appendix I shows analytically that ADC 3rd-order 

distortion cannot be measured directly if a phase-switching 

signal is used (due to 3rd-order harmonic cancellation), but it 

can be measured if condition (d) in Sec. 2.5 above is satisfied.  

Recall eq.(1) and AWG output can be written as follows. 
 Y(n𝑇𝑠) = 𝑎1𝐷𝑖𝑛(𝑛) + 𝑎3{𝐷𝑖𝑛(𝑛)}3   

We use Din in eq.(3), and the AWG output is calculated as 

follows [1]: 
 Y(n𝑇𝑠) = 𝑎1𝐷𝑖𝑛(𝑛) + 𝑎3{𝐷𝑖𝑛(𝑛)}3

= P sin(2𝜋𝑓𝑖𝑛𝑛𝑇𝑠)

+ Q cos (2𝜋 (
𝑓𝑠

2
− 𝑓𝑖𝑛) 𝑛𝑇𝑠)

+ R cos (2𝜋(
𝑓𝑠

2
− 3𝑓𝑖𝑛)𝑛𝑇𝑠). 

  

Here 
 

P ≡
√3

2
(𝑎1𝐴 +

3

4
𝑎3𝐴3)  

  

 
Q ≡

1

2
(𝑎1𝐴 +

3

4
𝑎3𝐴3)  

  

 
R ≡ −

1

4
𝑎3𝐴3. 

  

Next we consider the case that an analog LPF following the 

AWG attenuates (
𝑓𝑠

2
− 𝑓𝑖𝑛) component by α and (

𝑓𝑠

2
− 3𝑓𝑖𝑛) 

component by  β , and then we obtain the ADC input as 

follows: 

Y(n𝑇𝑠) =
√3

2
(𝑎1𝐴 +

3

4
𝑎3𝐴3) sin(2𝜋𝑓𝑖𝑛𝑛𝑇𝑠)

+
1

2
∙ 𝛼 ∙ (𝑎1𝐴 +

3

4
𝑎3𝐴3) cos (2𝜋(

𝑓𝑠

2
− 𝑓𝑖𝑛)𝑛𝑇𝑠)

−
1

4
∙ 𝛽 ∙ 𝑎3𝐴3 cos (2𝜋(

𝑓𝑠

2
− 3𝑓𝑖𝑛)𝑛𝑇𝑠) . 

 

We assume here fs(AWG) = fs(ADC) for simplicity, and we 

model the ADC under test as follows: 
 Z(n𝑇𝑠) = 𝑏1𝑌(𝑛𝑇𝑠) + 𝑏3{𝑌(𝑛𝑇𝑠)}3.   

Then the ADC output can be calculated as follows: 

𝐙(𝐧𝑻𝒔) = {𝒃𝟏𝑷 + 𝒃𝟑 (
𝟑

𝟒
𝑷𝟑 +

𝟑

𝟐
𝜶𝟐𝑷𝑸𝟐 +

𝟑

𝟐
𝜷𝟐𝑷𝑹𝟐

−
𝟑

𝟐
𝜶𝜷𝑷𝑸𝑹)} 𝐬𝐢𝐧(𝟐𝝅𝒇𝒊𝒏𝒏𝑻𝒔)

+ 𝒃𝟑 (−
𝟏

𝟒
𝑷𝟑 +

𝟑

𝟐
𝜶𝜷𝑷𝑸𝑹) 𝐬𝐢𝐧(𝟐𝝅𝟑𝒇𝒊𝒏𝒏𝑻𝒔)

+ {𝒃𝟏𝜶𝑸 + 𝒃𝟑 (
𝟑

𝟒
𝜶𝟑𝑸𝟑 +

𝟑

𝟐
𝜶𝑷𝟐𝑸 −

𝟑

𝟒
𝜷𝑷𝟐𝑹

+
𝟑

𝟐
𝜶𝜷𝟐𝑸𝑹𝟐)} 𝐜𝐨𝐬 (𝟐𝝅 (

𝒇𝒔

𝟐
− 𝒇𝒊𝒏) 𝒏𝑻𝒔)

+ 𝒃𝟑 (−
𝟑

𝟒
𝜶𝑷𝟐𝑸 +

𝟑

𝟒
𝜶𝟐𝜷𝑸𝟐𝑹) 𝐜𝐨𝐬 (𝟐𝝅 (

𝒇𝒔

𝟐
+ 𝒇𝒊𝒏) 𝒏𝑻𝒔)

+ {𝒃𝟏𝜷𝑹 + 𝒃𝟑 (
𝟑

𝟒
𝜷𝟑𝑹𝟑 −

𝟑

𝟒
𝜷𝑷𝟐𝑸 +

𝟑

𝟐
𝜷𝑷𝟐𝑹

+
𝟑

𝟐
𝜶𝟐𝜷𝑸𝟐𝑹)} 𝐜𝐨𝐬 (𝟐𝝅 (

𝒇𝒔

𝟐
− 𝟑𝒇𝒊𝒏) 𝒏𝑻𝒔)

+ 𝒃𝟑 {−
𝟑

𝟒
𝜷𝑷𝟐𝑹 +

𝟑

𝟒
𝜶𝜷𝟐𝑸𝑹𝟐} 𝐜𝐨𝐬 (𝟐𝝅 (

𝒇𝒔

𝟐
− 𝟓𝒇𝒊𝒏) 𝒏𝑻𝒔)

+
𝟑

𝟒
𝒃𝟑𝜶𝟐𝑷𝑸𝟐 𝐬𝐢𝐧(𝟐𝝅(𝒇𝒔 − 𝒇𝒊𝒏)𝒏𝑻𝒔) 

+ 𝒃𝟑 {−
𝟑

𝟒
𝜶𝟐𝑷𝑸𝟐 +

𝟑

𝟐
𝜶𝜷𝑷𝑸𝑹} 𝐬𝐢𝐧(𝟐𝝅(𝒇𝒔 − 𝟑𝒇𝒊𝒏)𝒏𝑻𝒔)

+ 𝒃𝟑 (
𝟑

𝟒
𝜷𝟐𝑷𝑹𝟐 −

𝟑

𝟐
𝜶𝜷𝑷𝑸𝑹) 𝐬𝐢𝐧(𝟐𝝅(𝒇𝒔 − 𝟓𝒇𝒊𝒏)𝒏𝑻𝒔)

−
𝟑

𝟒
𝒃𝟑𝜷𝟐𝑷𝑹𝟐 𝐬𝐢𝐧(𝟐𝝅(𝒇𝒔 − 𝟕𝒇𝒊𝒏)𝒏𝑻𝒔)

+
𝟏

𝟒
𝒃𝟑𝜶𝟑𝑸𝟑 𝐜𝐨𝐬 (𝟐𝝅 (

𝟑

𝟐
𝒇𝒔 − 𝟑𝒇𝒊𝒏) 𝒏𝑻𝒔)  

+
𝟑

𝟒
𝒃𝟑𝜶𝟐𝜷𝑸𝟐𝑹 𝐜𝐨𝐬 (𝟐𝝅 (

𝟑

𝟐
𝒇𝒔 − 𝟓𝒇𝒊𝒏) 𝒏𝑻𝒔)

+
𝟑

𝟒
𝒃𝟑𝜶𝜷𝟐𝑸𝑹𝟐 𝐜𝐨𝐬 (𝟐𝝅 (

𝟑

𝟐
𝒇𝒔 − 𝟕𝒇𝒊𝒏) 𝒏𝑻𝒔)

+
𝟏

𝟒
𝒃𝟑𝜷𝟑𝑹𝟑 𝐜𝐨𝐬 (𝟐𝝅 (

𝟑

𝟐
𝒇𝒔 − 𝟗𝒇𝒊𝒏) 𝒏𝑻𝒔) . 

http://www.el.gunma-u.ac.jp/~kobaweb/news/pdf/2011/signalgen20110526HP.pdf
http://www.el.gunma-u.ac.jp/~kobaweb/news/pdf/2011/signalgen20110526HP.pdf
http://www.el.gunma-u.ac.jp/~kobaweb/news/pdf/2013/2013-06towtone.pdf
http://www.el.gunma-u.ac.jp/~kobaweb/news/pdf/2013/2013-06towtone.pdf
http://www.el.gunma-u.ac.jp/~kobaweb/news/pdf/2011/2011-09poster19.pdf
http://www.el.gunma-u.ac.jp/~kobaweb/news/pdf/2011/2011-09poster19.pdf
http://www.itctestweek.org/files/2011AdvanceProgram.pdf
http://www.el.gunma-u.ac.jp/~kobaweb/news/pdf/2011/2011-09p1_19.pdf
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We see that 𝐬𝐢𝐧(𝟐𝝅𝟑𝒇𝒊𝒏𝒏𝑻𝒔) and 𝐬𝐢𝐧(𝟐𝝅(𝒇𝒔 − 𝟑𝒇𝒊𝒏)𝒏𝑻𝒔)  

components at the ADC output are cancelled when the phase-

switching signal is directly applied (i.e., in case  𝜶 = 𝟏). 

Coefficient of sin(2𝜋3𝑓𝑖𝑛𝑛𝑇𝑠) is given by 
 

𝑏3 (−
1

4
𝑃3 +

3

2
𝛼𝛽𝑃𝑄𝑅). 

  

Coefficient of sin(2𝜋(𝑓𝑠 − 3𝑓𝑖𝑛)𝑛𝑇𝑠) is given by 
 

𝑏3 {−
3

4
𝛼2𝑃𝑄2 +

3

2
𝛼𝛽𝑃𝑄𝑅} . 

  

Note that  
 sin(2𝜋(𝑓𝑠 − 3𝑓𝑖𝑛)𝑛𝑇𝑠) = − sin(2𝜋3𝑓𝑖𝑛𝑛𝑇𝑠).   

Then we merge both terms and the coefficient of the merged 

sin(2𝜋3𝑓𝑖𝑛𝑛𝑇𝑠) term is given by 

𝑏3 (−
1

4
𝑃3 +

3

2
𝛼𝛽𝑃𝑄𝑅) − 𝑏3 {−

3

4
𝛼2𝑃𝑄2 +

3

2
𝛼𝛽𝑃𝑄𝑅}

= 𝑏3 (−
1

4
𝑃3 +

3

4
𝛼2𝑃𝑄2)

= 𝑏3 {−
1

4
(

√3

2
(𝑎1𝐴 +

3

4
𝑎3𝐴3))

3

+
3

4
𝛼2 (

√3

2
(𝑎1𝐴 +

3

4
𝑎3𝐴3)) (

1

2
(𝑎1𝐴 +

3

4
𝑎3𝐴3))

2

}

= 𝑏3 {
3√3

8
(𝑎1𝐴 +

3

4
𝑎3𝐴3)

3

} (−1 + 𝛼2)

= −𝑏3 {
3√3

8
(𝑎1𝐴 +

3

4
𝑎3𝐴3)

3

} (1 − 𝛼2) . 

With some reasonable assumptions (such as that 𝒂𝟏  is 

dominant compared to 𝒂𝟑 ), we see that if  𝛂  is somewhat 

small (say, 0.1), we can accurately measure 3rd order distortion.  

Note that coefficient of 𝐬𝐢𝐧(𝟐𝝅𝒇𝒊𝒏𝒏𝑻𝒔) is given by 
 √𝟑

𝟐
(𝒂𝟏𝑨 +

𝟑

𝟒
𝒂𝟑𝑨𝟑) {𝒃𝟏 +

𝟑

𝟏𝟔
𝒂𝟏

𝟐𝒃𝟑𝑨𝟐

+
𝟑

𝟏𝟔
(

𝟑

𝟐
+ 𝜶𝜷) 𝒂𝟏𝒂𝟑𝒃𝟑𝑨𝟒

+
𝟑

𝟑𝟐
(

𝟗

𝟖
+ 𝜷𝟐 +

𝟑

𝟐
𝜶𝜷) 𝒂𝟑

𝟐𝒃𝟑𝑨𝟔} . 

Then Fig. 18 shows numerical calculation results (based on 

the above equations) of the error of 

  𝒇𝒊𝒏𝐀𝐦𝐩𝐥𝐢𝐭𝐮𝐝𝐞 /𝟑𝒇𝒊𝒏 𝐀𝐦𝐩𝐥𝐢𝐭𝐮𝐝𝐞 

between the phase switching signal input with attenuation  𝛂   

and the ideal sinusoidal input cases for a1=b1=1, a3=b3=-0.005,  

𝛽 = 1. We see that when  𝛂  is small, the error is small. 

 
Fig.18  Error of the measurable fundamental and 3rd order  

harmonic amplitude ratio with the phase switching technique, 

based on numerical calculation of the above derived 

equations. 

 

Fig. 19, Fig. 20, and Fig. 21 show ADC test simulation results 

using a1=b1=1, a3=b3=-0.0101, several input amplitudes and 

frequencies when not using (LHS figure) or using (RHS 

figure) an LPF to attenuate high-frequency spurious of the 

AWG output. The three RHS figures show that 3rrd order 

harmonics can be measured directly when an LPF is used. 

 
Fig. 19 Power spectrum of ADC output Z(nTs) with the input  

amplitude A=1, fin/fs= 0.0078125.  (Left) No attenuation of high  

frequency spurious signals.  (Right) Attenuation with an LPF 

(α=0.0019270, β=0.0010991). 

 
Fig.20 Power spectrum of ADC output Z(nTs) with the input  

amplitude A=1/2, fin/fs= 0.0078125. (Left) No attenuation of high  

frequency spurious signals.  (Right) Attenuation with an LPF 

(α=0.0019234, β=0.0011031). 

 
Fig.21 Power spectrum of ADC output Z(nTs) with the input  

amplitude A=1/2, fin/fs= 0.0234375.(Left) No attenuation of high  

frequency spurious signals.  (Right) Attenuation with an LPF 

(α=0.0000576, β=0.0000605). 
 

Appendix II 

This appendix II shows analytically that ADC 2nd-order 

distortion cannot be measured directly using a phase-switching 

signal source with 2nd-order harmonic cancellation [1], but it 

can be measured if the spurious components at high 

frequencies are attenuated by even a small amount.  

 

Suppose that an AWG has the second-order harmonics and its  

output can be written as follows. 
 Y(n𝑇𝑠) = 𝑎1𝐷𝑖𝑛(𝑛) + 𝑎2{𝐷𝑖𝑛(𝑛)}2.   

 

Then we use the following Din for the second-order distortion 

cancellation [1]: 
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𝐷𝑖𝑛(𝑛) = 
𝐴・sin(2𝜋𝑓𝑖𝑛𝑛𝑇𝑠(𝐴𝑊𝐺) −

𝜋

4
)

𝐴・sin (2𝜋𝑓𝑖𝑛𝑛𝑇𝑠(𝐴𝑊𝐺) +
𝜋

4
) .
 

 

n: odd 

 

n:even 

 

The AWG output is calculated as follows [1]: 
 Y(n𝑇𝑠) = 𝑎1𝐷𝑖𝑛(𝑛) + 𝑎2{𝐷𝑖𝑛(𝑛)}2

=
𝑎2𝐴2

2
+

√2

2
𝑎1𝐴 cos(2𝜋𝑓𝑖𝑛𝑛𝑇𝑠) 

+
√2

4
𝑎1𝐴cos (2𝜋 (

𝑓𝑠

2
+ 𝑓𝑖𝑛) 𝑛𝑇𝑠) 

+
√2

4
𝑎1𝐴cos (2𝜋 (

𝑓𝑠

2
− 𝑓𝑖𝑛) 𝑛𝑇𝑠) 

+
1

4
𝑎2𝐴2sin (2𝜋 (

𝑓𝑠

2
+ 2𝑓𝑖𝑛) 𝑛𝑇𝑠) 

−
1

4
𝑎2𝐴2sin (2𝜋 (

𝑓𝑠

2
− 2𝑓𝑖𝑛) 𝑛𝑇𝑠) . 

  

 

Next we consider the case that an analog LPF following the 

AWG attenuates (
𝑓𝑠

2
− 𝑓𝑖𝑛) component by  α , (

𝑓𝑠

2
+ 2𝑓𝑖𝑛) 

component by  β , (
𝑓𝑠

2
+ 2𝑓𝑖𝑛) component by  γ and (

𝑓𝑠

2
− 𝑓𝑖𝑛) 

component by  η (here  0< α,  β, γ, η <=1), and  we obtain the 

ADC input as follows: 
 Y(n𝑇𝑠) = 𝑎1𝐷𝑖𝑛(𝑛) + 𝑎2{𝐷𝑖𝑛(𝑛)}2

=
𝑎2𝐴2

2
+

√2

2
𝑎1𝐴 cos(2𝜋𝑓𝑖𝑛𝑛𝑇𝑠) 

+
√2

4
∙ 𝛼 ∙ 𝑎1𝐴cos (2𝜋 (

𝑓𝑠

2
+ 𝑓𝑖𝑛) 𝑛𝑇𝑠) 

+
√2

4
∙ 𝛽 ∙ 𝑎1𝐴cos (2𝜋 (

𝑓𝑠

2
− 𝑓𝑖𝑛) 𝑛𝑇𝑠) 

+
1

4
∙ 𝛾 ∙ 𝑎2𝐴2sin (2𝜋 (

𝑓𝑠

2
+ 2𝑓𝑖𝑛) 𝑛𝑇𝑠) 

−
1

4
∙ 𝜂 ∙ 𝑎2𝐴2sin (2𝜋 (

𝑓𝑠

2
− 2𝑓𝑖𝑛) 𝑛𝑇𝑠) . 

  

We assume here fs(AWG) = fs(ADC) for simplicity, and we 

model the ADC under test which has the second-order 

distortion as follows: 
 Z(n𝑇𝑠) = 𝑏1𝑌(𝑛𝑇𝑠) + 𝑏2{𝑌(𝑛𝑇𝑠)}2.   

Then the ADC output can be calculated as follows: 

Then we have the ADC output as follows: 

𝑍(𝑛𝑇𝑠) =
1

32
𝐴2(16𝑎2𝑏1 + 2𝑎1

2𝑏2(4 + 𝛼2 + 𝛽2)

+ 𝐴2𝑎2
2𝑏2(8 + 𝛾2 + 𝜂2))

+
1

8
𝐴2𝑎1

2𝑏2(−2 + 𝛼𝛽)cos(2𝜋2𝑓𝑖𝑛𝑛𝑇𝑠)

−
1

16
𝐴4𝑎2

2𝑏2𝛾𝜂cos(2𝜋4𝑓𝑖𝑛𝑛𝜋𝑇𝑠)

+
1

16
𝐴2𝑎1

2𝑏2𝛽2cos(2𝜋(𝑓𝑠 − 2𝑓𝑖𝑛)𝑛𝑇𝑠)

−
1

32
𝐴4𝑎2

2𝑏2𝜂2cos(2𝜋(𝑓𝑠 − 4𝑓𝑖𝑛)𝑛𝑇𝑠)

−
𝐴3𝑎1𝑎2𝑏2𝜂

4√2
 cos (2𝜋 (

𝑓𝑠

2
− 3𝑓𝑖𝑛) 𝑛𝜋𝑇𝑠)

+ (
1

8
𝐴2𝑎1

2𝑏2𝛼𝛽 +
1

16
𝐴4𝑎2

2𝑏2𝛾𝜂) cos(2𝜋𝑓𝑠𝑛𝑇𝑠)

+ (
𝐴𝑎1𝑏1𝛽

2√2
+

𝐴3𝑎1𝑎2𝑏2𝛽

2√2

+
𝐴3𝑎1𝑎2𝑏2𝜂

4√2
) cos (2𝜋 (

𝑓𝑠

2
− 𝑓𝑖𝑛) 𝑛𝑇𝑠) 

+ (
𝐴𝑎1𝑏1𝛼

2√2
+

𝐴3𝑎1𝑎2𝑏2𝛼

2√2

+
𝐴3𝑎1𝑎2𝑏2𝛾

4√2
) cos (2𝜋 (

𝑓𝑠

2
+ 𝑓𝑖𝑛) 𝑛𝑇𝑠)

+
1

16
𝐴2𝑎1

2𝑏2𝛼2cos(2𝜋(𝑓𝑠 + 2𝑓𝑖𝑛)𝑛𝑇𝑠)

−
1

32
𝐴4𝑎2

2𝑏2𝛾2cos(2𝜋(𝑓𝑠 + 4𝑓𝑖𝑛)𝑛𝑇𝑠)

−
𝐴3𝑎1𝑎2𝑏2𝛾

4√2
cos (2𝜋 (

𝑓𝑠

2
+ 3𝑓𝑖𝑛) 𝑛𝑇𝑠)

+
1

32
𝐴(16√2𝑎1𝑏1 + 16√2𝐴2𝑎1𝑎2𝑏2 + 2√2𝐴2𝑎1𝑎2𝑏2𝛽𝛾

+ 2√2𝐴2𝑎1𝑎2𝑏2𝛽𝜂)sin(2𝜋𝑓𝑖𝑛𝑛𝑇𝑠)

+
1

32
𝐴(2√2𝐴2𝑎1𝑎2𝑏2𝛽𝛾 + 2√2𝐴2𝑎1𝑎2𝑏2𝛼𝜂)sin(2𝜋3𝑓𝑖𝑛𝑛𝑇𝑠)

−
𝐴3𝑎1𝑎2𝑏2𝛼𝜂

8√2
 sin(2𝜋(𝑓𝑠 − 𝑓𝑖𝑛)𝑛𝑇𝑠)

−
1

4
𝐴2𝑎1

2𝑏2𝛽sin (2𝜋 (
𝑓𝑠

2
− 2𝑓𝑖𝑛) 𝑛𝜋𝑇𝑠)

+
1

32
𝐴(8𝐴𝑎1

2𝑏2𝛽 − 8𝐴𝑎1
2𝑏2𝛼)sin (2𝜋

𝑓𝑠

2
𝑛𝑇𝑠)

+
1

32
𝐴(−8𝐴𝑎2𝑏1𝜂 − 8𝐴3𝑎2

2𝑏2𝜂)sin (2𝜋 (
𝑓𝑠

2
− 2𝑓𝑖𝑛) 𝑛𝜋𝑇𝑠)

−
𝐴3𝑎1𝑎2𝑏2𝛽𝜂

8√2
sin(2𝜋(𝑓𝑠 − 3𝑓𝑖𝑛)𝑛𝑇𝑠)

+
𝐴3𝑎1𝑎2𝑏2𝛽𝛾

8√2
sin(2𝜋(𝑓𝑠 + 𝑓𝑖𝑛)𝑛𝑇𝑠)

+
𝐴3𝑎1𝑎2𝑏2𝛼𝛾

8√2
sin(2𝜋(𝑓𝑠 + 3𝑓𝑖𝑛)𝑛𝑇𝑠)

+
1

32
𝐴(8𝐴𝑎1

2𝑏2𝛼 + 8𝐴𝑎2𝑏1𝛾

+ 8𝐴3𝑎2
2𝑏2𝛾)sin (2𝜋 (

𝑓𝑠

2
+ 2𝑓𝑖𝑛) 𝑛𝑇𝑠) . 

 

Coefficient of cos(2𝜋2𝑓𝑖𝑛𝑛𝑇𝑠) is given by 
 1

8
𝐴2𝑎1

2𝑏2(−2 + 𝛼𝛽). 
  

Coefficient of cos(2𝜋(𝑓𝑠 − 2𝑓𝑖𝑛)𝑛𝑇𝑠) is given by 
 1

16
𝐴2𝑎1

2𝑏2𝛽2 . 
  

 

Coefficient of cos(2𝜋(𝑓𝑠 + 2𝑓𝑖𝑛)𝑛𝑇𝑠) given by 
 1

16
𝐴2𝑎1

2𝑏2𝛼2 . 
  

Note that  
 cos(2𝜋(𝑓𝑠 − 2𝑓𝑖𝑛)𝑛𝑇𝑠) = cos(2𝜋2𝑓𝑖𝑛𝑛𝑇𝑠),   

 cos(2𝜋(𝑓𝑠 + 2𝑓𝑖𝑛)𝑛𝑇𝑠) = cos(2𝜋2𝑓𝑖𝑛𝑛𝑇𝑠).   

We see that cos(2𝜋2𝑓𝑖𝑛𝑛𝑇𝑠) and cos(2𝜋(𝑓𝑠 ± 2𝑓𝑖𝑛)𝑛𝑇𝑠) 

components at the ADC output are cancelled when the phase-

switching signal is directly applied (i.e., in case  𝛼 = 𝛽 = 1). 

Then we merge both terms and the coefficient of the merged 

cos(2𝜋2𝑓𝑖𝑛𝑛𝑇𝑠) term is given by 
1

8
𝐴2𝑎1

2𝑏2(−2 + 𝛼𝛽) +
1

16
𝐴2𝑎1

2𝑏2𝛽2 +
1

16
𝐴2𝑎1

2𝑏2𝛼2 

=
1

16
𝑎1

2𝑏2𝐴2(𝛼2 + 𝛽2 + 2𝛼𝛽 − 4) 

=
1

16
𝑎1

2𝑏2𝐴2{(𝛼 + 𝛽)2 − 4}. 

By making some reasonable assumptions (such as 𝒂𝟏  is 

dominant compared to 𝒂𝟐) we see that if  𝜶 + 𝜷  is somewhat 

small (say, 0.1), we can accurately measure 2ndorder distortion.  

Note that coefficient of 𝐜𝐨𝐬(𝟐𝝅𝒇𝒊𝒏𝒏𝑻𝒔)  given by 
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√2

2
𝑎1𝐴(𝑏1 + 𝑎2𝑏2𝐴2) +

√2

16
𝑎1𝑎2𝑏2𝐴3(𝛼 + 𝜂)(𝛽 + 𝛾) . 

Fig. 21 shows numerical calculation results (based on the  

above equations) of the error of 

  𝒇𝒊𝒏𝐀𝐦𝐩𝐥𝐢𝐭𝐮𝐝𝐞 /𝟐𝒇𝒊𝒏 𝐀𝐦𝐩𝐥𝐢𝐭𝐮𝐝𝐞 

between the phase switching signal input with attenuation  

 𝛂, 𝛃  and the ideal sinusoidal input cases for a1=b1=1,  

a3=b3=-0.005,  𝜸 = 𝜼 = 𝟏. We see that when  𝛂 + 𝛃  is small,  

the error for HD2 detection is small. In other words, it is 

useful to use a sinusoidal signal generated by phase switching 

for ADC second-order distortion testing when its high 

frequency components are attenuated even by a small amount. 

 
Fig.22  Error of the measurable fundamental and 2nd  order  

harmonic amplitude ratio with the phase switching technique, 

based on numerical calculation of the above derived equations. 

 

Appendix III 

Now let us consider a two-tone signal (f1, f2) generated by 

phase switching for ADC IMD3 measurement [4, 5]. The 

analysis is very complicated, so only simulation results are 

shown here.  

Fig. 23 shows the simulated two-tone signal power spectrum 

generated by phase switching WITHOUT attenuation of high 

frequency components. We see that the IMD3 components are 

removed. Fig. 24 shows the ADC output spectrum for the two-

tone input signal in Fig.20, and we see that IMD3 components 

can NOT be measured even if the ADC has third-order 

distortion. 

  Fig. 25 shows the two-tone signal power spectrum WITH 

attenuation of high frequency components. Fig. 26 shows 

ADC output for the two tone signal in Fig. 25, and we see that 

IMD3 components can be measured when the ADC has third-

order distortion. 

  Hence the same argument holds for ADC testing using a two-

tone signal generated by phase switching. Notice that direct 

filtering of IMD3 is difficult. However, the phase switching 

technique is also applicable to two-tone signals and with 

relaxed filtering of high frequency components of the ADC 

input (instead of IMD3 filtering), the ADC output IMD3 can 

be measured correctly. 

 

Fig.23 Two-tone signal power spectrum generated by the 

phase switching technique without attenuation of high 

frequency components. 

 
Fig.24 ADC output spectrum for the two-tone input signal in 

Fig.23. IMD3 components cannot be measured directly even if 

the ADC has third-order distortion. 

 
Fig.25 Two-tone signal power spectrum generated by the 

phase switching technique, and attenuation of high frequency 

components by the following LPF. 

 
Fig.26 ADC output spectrum for the two-tone input signal in 

Fig.25.  IMD3 components can be measured directly. 

 


