Error Correction Algorithm for
Folding/Interpolation ADC

Haruo Kobayashi, Hiroshi Sakayori,

Tsutomu Tobari

and Hiroyuki Matsuura

Teratec Corp. 2-9-32 Naka-cho Musashino Tokyo 180 Japan

tel: 81-422-52-2102

fax: 81-422-52-2125

e-mail: haruo@teratec.yokogawa.co.jp

This paper digital error ion algo-

rithms for folding/interpolation AD converters which yield

to very simple circuitry. The relationships between error

correction and input signal frequency have been clarified
i and also by si i

I. INTRODUCTION

A folding/interpolation analog-to-digital converter (ADC)
is one of the most suitable architectures for realizing very
high-speed ADCs with relatively small hardware and low
power. Flash ADCs are often considered to be the fastest
type of ADC because it performs an AD conversion in
one clock cycle. However, they require complex hardware
and considerable power, and also input capacitance can be
large. On the other hand, a folding/interpolation ADC
uses significantly less hardware, power and input capaci-
tance, while it can also perform an AD conversion in one
clock cycle [1,2,3,4,5]. Hence its clock skew can be smaller
and its circuit components (such as comparators) can be
allowed to consume more power which make it suitable for
high-speed operation.

A folding/interpolation ADC is a kind of two-step ADC;
a folding circuit works as a coarse ADC and generates a
residue while an interpolation circuit works as a fine ADC.
There is usually a slight signal delay from folding to in-
terpolation circuits, and digital error correction circuit has
to be employed as in other two-step ADCs. This paper
describes digital error correction algorithm which requires
only simple digital circuit, and clarifies the relationship
between error correction algorithm and:input signal fre-
quency.

II. FOLDING/INTERPOLATION ADC

For simplicity, we hereafter consider a 6-bit folding/interpo-
lation ADC. Fig.1 shows its block diagram where the input
is differential, the first, second and third MSBs of the Gray
code are generated by folding circuits, and remaining three
bits are generated by an interpolation circuit. However,
the discussion here can be easily extended to other config-
urations of folding/interpolation ADCs.

Folding circuits perform analog encoding with differen-
tial input pairs and resistor strings (Fig.2), and generate
gray code digital output (g5, 974, ¢s3). Fig.3(a) generates
MSB (gy5) and Fig.3(b) generates gs4 while Fig.3(c) pro-
duces gy3 and Q and Fig.3(d) generates iy and I, where
Q and I are used in the interpolation circuit (Fig.4). We
see that folding circuits can simplify digital encoder circuit

0-7803-2570-2/95 $4.00 ©1995 IEEE

and also significantly decrease the number of comparators
and latches compared to flash ADCs.

The interpolation circuit reduces the number of differen-
tial input pairs and thus also decreases input capacitance.
I and Q are sinusoidal signals with 90 degree phase differ-
ence utilizing Bipolar transistor characteristics [5]:

Q ~ Geos(2nVin /(ARL)), I Gsin(27Vin/(4RL)),
where G is a constant. The interpolation circuit gener-
ates sinusoidal signals with 22.5 degree phase difference
with proper choices of Ry, Ry, R3 and R4 values in Fig.4
[5]. The associated comparators and logic circuit find the
zero-crossing point and generate Gray code. Waveforms of
input versus outputs of folding and interpolation circuits
are given in Fig.5.

In the actual ADC implementation, there is a signal
delay 6t from folding to interpolation circuits; in other
words a folding circuit performs AD conversion to Vi (nT)
while an interpolation circuit performs AD conversion to
Vin(nT + 6t), where T is the sampling period and n =
.—2,—1,0,1,2,.... Thus a digital error correction circuit
has to be employed.

Also when the input signal is out of range and overflow
or underflow occurs, the output digital signal has to be set
to i or mini value respectively.

We will discuss error correction algorithms which handle
the above problems in the following sections.

111. ERROR CORRECTION ALGORITHM

We assume that the folding circuit digitizes Vin(nT) f““d
generates digital signals gys, gr4, 973(=) and iy, while
the interpolation circuit digitizes Vin(nT + 6t) and gener-
ates digital signals g2, g1, gio, ¢;, and 7;. Here gs5 and gya
are the first and second MSBs in the Gray code of Vin(nT)
while gz, gi1 and gio are the third, second and first !;SBS
in the Gray code of Vin(nT+ 6t). Also gy, iy, g: and i ar®
obtained as follows:

g7 =1 when Q(nT) >0, otherwise g5 = 0,

iy =1when I(nT) >0, otherwise if
g¢; = 1 when Q(nT + 6t) > 0, otherwise g;

i; = 1 when I(nT +6t) > 0, otherwise i; = 0-
Error correction here means to estimate gis, gi4 and 43
(which correspond to the first, second and third MSBs 1N
the Gray code of Vi (nT + 6t) and are not actually gener-
ated) from gys, gra, 4, iy, ¢; and 4. Note that gi2, 9i1 i‘"‘)
gio are not modified in this algorithm. Our algorithms u»*‘e
iy and i; (which are not Gray code) as well as Gray c©

700

975, 914, 97(= gs3) and g; in order to obtain gis, gi4 and

9i3

Smce there is a signal delay 6t > 0, g; # g or iy # i;
can happen, and we will assign the following ‘case number’
according to the values of (gz, 4y, g;, %) :

case 0:(0,0,0,0),(0,1,0,1),(1,0,1,0) or (1,1,1,1),
case 0,0,1,0), case 2:(1,0,1,1),
case 1,1,0,1), case 4:(0,1,0,0),
case 1,0,0,0), case 6:(1,1,1,0),
case 0,1,1,1), case 8:(0,0,0,1),
case 9:(0,0,1,1), case 10: (1,0,0,1),
case 11: (1,1,0,0), case 12 (0,1,1,0).

Note that in case 0, (g7 = ¢i,iy = ;) and in case 1 to 8,
(a7 = @iyiy # is) or (¢ # i,y = is) while in case 9 to 12,
(g # i1y # 1;). In case 0, no correction is required and
in case 1 to 8, correction works properly while in case 9 to
12, correction cannot work as shown later.

Table 1 shows digital codes of V;(nT) and Vin(nT + 6t)
of several values when Vin (nT) is larger than Vi, (nT + 5!)
by 3 LSBs. Wesee that only cases 0, 1, 2, 3 and 4 appearing
there and in cases 1,2,3 or 4, Gray code (g/s, 074, 53) of

Vin(nT) is larger than Gray code (gis, gi4, i3) Of Vin(nT +
6t) by 1. On the other hand, Table 2 shows digital codes of
Vin(nT) and Vin(nT + 6t) of several values when Vi, (nT)
is smaller than V;,(nT + 6t) by 2 LSBs. We see that only
cases 0, 5, 6, 7 and 8 appearing there and in cases 5,6,7
or 8, Gray code (g5, 974, 973) of Vin(nT) is smaller than
Gray code (gis, gia, gia) of Vin(nT + 6t) by 1. Tables 1 and
2 also show that in case 0 no correction is required. Thus
we obtain the following error correction algorithm:
Algorithm 1 :

In case 0 :

Gray code (g5, g4, gi3) =
Incases 1,2,3 0r 4 :
Gray code (gis, gia, 9i3) =
In cases 5, 6, 7 or 8 :
Gray code (gis, gi4, 9i3)

Gray code (955, g4, 973)-
Gray code (gs5, g4, 9y3) +1.

= Gray code (g5, g74, 973) —1.
Let us consider to simplify Algorithm 1. Noting that in-
crement or decrement by 1 for Gray code of g5, g4 and
gs3 can be implemented with one bit value change among
975, 974 and gg3, we obtain the following:

Algorithm 2 :

Error corrected Gray code gis, gia, gis is given as follows:
In cases 0, 1,8, 5 0r 7: gis = g5, gia = g4, 9i3 = ¢i-

In cases 2 or 6 : gis = g5, gia =974, 9i3 = G-

Incases 4 or 8 : gis = 5, gia = 974, Gis = G-

Proof In case 0, no correction is required and thus
9is = gys, Gia = gr4, 9i3 = qf(=). It follows from
Tables 1 and 2 that when q; # g;(i.e., in cases 1, 3, 5 or
7), gi3 = ¢, in cases 2 or 6, g;4 =7ra, and in cases 4 or 8,
9is = g5 o

We note that it is straightforward to extend these algo-
rithms for folding/interpolation ADCs with other resolu-
tion.

Let us consider the limitations of the error correction.
Table 3 shows digital codes of Vin(nT) and Vin(nT'+ 6t) of

701

several values when Vi, (nT) is larger than Vi, (nT + 6t) by
9 LSBs. We see that cases 9, 10, 11 and 12 as well as cases
0,1, 2, 3 and 4 appear there. On the other hand, Table
4 shows digital codes of of Vix(nT) and Via(nT + 6t) of
several values when Vj,(nT) is smaller than Vi, (nT + 6t)
by 10 LSBs. We see that cases 9, 10, 11 and 12 as well as
cases 0, 5, 6, 7 and 8 appear there. Thus in cases 9, 10, 11
and 12, we can not decide whether (g5, 974, 973) should be
decreased or increased by 1. From these considerations, we
see that the error correction works properly if the following
is satisfied:

—2™ LSBs < Vip(nT + 6t) — Vin(nT) < 2™ LSBs (1)

where m is the number of bits generated by the interpola-
tion circuit and in this example m = 3.

IV. OVERFLOW/UNDERFLOW DETECTION
If overflow or underflow of input occurs, the digital output
of the ADC should be set to (1,0,0,0,0,0) or (0,0,0,0,0,0)
in the Gray code respectively. We see that folding circuits
in Figs.3(a) and (b) generate the first two MSBs (1,0) or
(0,0) automatically when overflow or underflow occurs re-
spectively. However because of cyclic nature of interpola-
tion circuit signals, the interpolation circuit cannot set the
remaining bits to (0,0,0,0), and thus overflow/underflow
detection circuit is required. We can implement out-of-
range detection circuit with a folding circuit as shown in
Fig.6, and if its comparator output “out-rng” is 0, the first,
second, third and fourth LSBs are set to 0 by digital gates.

V. CIRCUIT IMPLEMENTATION

If q7.if, 4i,ii, “out-rng” as well as gys, g7, gi2, g, gio are
captured in acquisition memory, a digital processor can
perform the above error correction by software. However
this requires 4-bit extra memory per word, and some ap-
plications may demand real-time error correction. Now we
consider the logic design which implements the algorithms.
Algorithm 2 and the above mentioned overflow/undeflow
handling yield to the following Boolean expressions :

9is = (77 - (iy @ i;) - out-rng) @ gys,
9ia = (g7 - (iy @ i;) - out-rng) & gy4,
9i3 =i 92 = gz - out-rng,

91 =9a 90 = gio - out-rng.

- out-rng,
out-rng,
Fig.7 shows the circuit implementation for g;s, gi4, 9i3 Whereas
Fig.8 shows error correction circuitry for giz, gi1, gio With
an encoder for interpolation outputs. One sees that these
are very simple.

VI. ERROR CORRECTION AND INPUT SIGNAL FREQUENCY

The signal delay 6t from folding to interpolation circuits
restricts the maximum frequency of the input signal, and
this section clarifies their relationships. Let the input be a
sinusoidal signal Vin(t) = Asin(27 fint), where £A is ADC
input range and f;, is an input signal frequency. Also let k
be the number of bits generated by folding circuit (in this
example k = 3). Then it follows from equation (1) that

if the following equation is satisfied, the error correction
works properly.

2-%+14 > max; |Asin(27 fi, (¢ + 6t)) — Asin(27 fint)|
~ max; A| cos(27 fint)|27 fin6t, when 6t is small,
= 2An finbt.
Thus we obtain
Finbt < 1/(257). ®

The above equation gives us the maximumsignal frequency,
for a §t, for which the error correction works properly.

VII. SIMULATION RESULTS
Fig.9 shows the simulation results of Algorithm 2 with a
sinusoidal input and several values of signal delay 8¢, and
S/N was obtained by FFT. A solid line indicates S/N versus
6§t with error correction and a dashed line indicates S/N
versus 6t without error correction. fin = 17/1024 and 6t is
changed from 0 to 4.0. Note that 1/(fin237) & 2.4 which is
the maximum allowable 6t for error correction given by (2).
Simulation results in Fig.9 show that when 6t < 2.4, S/N
with error correction maintains the value of & 6bit x 6.02
+ 1.8 dB = 37.92 dB while S/N without error correction
degrades, and when 6t > 2.4, S/N with error correction also
degrades. These results confirm that our error correction
algorithm works properly within the range of equation (2).

VIII. CoNCLUSION
We have described digital error correction algorithms for
folding/interpolation ADCs which can be implemented with
simple digital circuitry. The relationships between error
correction and input signal frequency were analyzed. Sim-
ulation results confirmed that the algorithm and analysis
were correct.

IX. ACKNOWLEDGEMENTS

We would like to thank H. Nakamura, M. Morimura, H.
Hosomatsu and K. Kobayashi of Teratec Corp. for their
continuous encouragement and guidance. Thanks are also
due to K. Wilkinson of Yokogawa Electric Corp. for valu-
able discussions.

REFERENCES

(1] J. J. Corcoran et.al., “A 400MHz 6b ADC,” ISSCC, Feb. 1984.

(2] R. J. Grift, et.al., “An 8b Video ADC Incorporating Folding
and Interpolation Techniques,” J. of Solid-State Circuits, Dec.
1987,

[3] R. J. Plassche et.al., “An 8b 100MHz Full-Nyquist ADG," J. of
Solid-State Circuits, Dec. 1988. .

[4] J. Valburg and R. J. Plassche, “An 8b 650MHz Folding ADC,"
J. of Solid-State Circuits, Dec. 1992.

[5] W. Colleran and A. A. Abidi, “A 10b 75MHz Two-Stage
Pipelined Bipolar ADC," J. of Solid-State Circuits, Dec. 1993.

Error

Correction

circuit

Fig.1 Block diagram of a 6b folding / interpolation ADC

Vins L
- OO O R
Vi0+ vils vi2e e vide viSH view

W0- sl iz w3 vide VS vi6
Fig:2 Input resistor ladder

Fig:3(b) Folding circuit for Oyy

e]
5

ho o

Fig.3(c) Folding circuit for @, Gy

i
"

702

il

Fig.3 (d) Folding circuit for I, iy

2 3
g D
o 28
b Ttk
= <5
» £5
a < o 53
B 2 T TTT T s 8 H Tt
& % 4 & Ec3 LS £8
: 5 £88 g8
8 z58 Fos
E—£2 3 5 7l L34 AR ZiEE
s 2 s L RS P 3 |
s = F M § I8 -Es
= | I 52& 0005000 —mmmmmmm mmmmmmmm coceoees ceaan00s - > %
AR 5 & I P - “e3
2 S | P e
= $s Sortstidtetsblizammsiun i ———— M
g 5 2° 2:2 2
s s Fc33 4
£ o s S : ST
2 s L 5 H 8
§ 2 - 9 a3
E 2| L i s i3
~ s | | s @ 3
k) 1 i LAY % <
4 o 5 2 H £2
w oso 3 R & £]
LR i H %2
£ m d 8
lepIN/s B oo eeaad I 5
b £3
£ 28
= 3
k.
YO0 % 3 3 ¥ 2
. 2
m” [mw MW mw mw I3 £ F: -
e Tur wir el i3 f1 fi sk / L 2 £ g
Y oy oy 3 o Y iy F + | - H
I Y = 3 3 2
b B NM B = m H g
4 e Ik § 2 £ H
TIT i S1f ir BT Rl i 2 T A 5
8 - g
1o 3 2 2E s
o s £
O ey H i E £
o 2] £
(i) z € 15 E H
e Car = e e 2 = -~
g" S i Ui T th e B o 3 £ £
s @ S e F
g i € H ° 8
(B 2 5 2
k] 8 £
1 3 H =] -
, = S &
v ;! £ H 2 &
1 ¥ b 5 2 f i s
17 ¢ g 2 s r N £
z 5 2 H
(13 L 5 ° £
5 K -8 H
(5 . = - REARYAR z = g
w0 v g § 3 ¥ e g &
® o i 2| 3 = H
-4 £ £ HE £
T~ TR L \ £ ARl es o n oo mmen comeman fon i T £
By oM o ® % o g - 3 R e — semasess atosascs v v §
oT L R sl O =4
3 Rt 2

703

