第58回システムLSI合同ゼミ

2014/10/18 @東京農工大学 小金井キャンパス

複素マルチバンドパスΔΣDACの線形性向上技術

○村上 正紘 小林 春夫 (群馬大学)

Supported by STARC

OUTLINE

・ 複素マルチバンドパス ΔΣ DA 変調器

OUTLINE

検索マルチバンドパス ΔΣ DA 変調器

DWA アルゴリズム

- 従来手法

- 提案手法

まとめ

研究背景

研究目的

高品質なI,Qテスト信号を低コストで生成

I,Q信号生成法

① アナログ手法

② デジタル手法(1)

③ デジタル手法(2)

① アナログ手法

大きなナイキストレートのDAC

急峻なアナログフィルタ

②デジタル手法(1)

②デジタル手法(1)

②デジタル手法(1)

2デジタル手法(2)~複素信号処理~


```
SNDRの比較~なぜ複素を用いるのか~
```


SNDRの比較~なぜ複素を用いるのか~

⇒ 高品質な I,Q 信号

Complex signal processing is NOT complex. (K.Martin)

OUTLINE

検素マルチバンドパス ΔΣ DA 変調器

DWA アルゴリズム

- 従来手法

まとめ

16/52 複素バンドパスノイズシェープの原理

Power

$$I_{out} + jQ_{out} = \frac{H(z)}{1 + H(z)} (I_{in} + jQ_{in})$$

$$\Rightarrow \omega \qquad 1$$

$$+\frac{1}{1+H(z)}(E_I+jE_Q)$$

16/52 複素バンドパスノイズシェープの原理

16/52 複素バンドパスノイズシェープの原理

16/52 複素バンドパスノイズシェープの原理

17/52 2次複素マルチバンドパスデルタシグマDAC

入力周波数 $f_1 \approx f_2$ のとき 3次IMD成分が信号帯域に入り込む

評価のために

マルチトーン信号はなぜ必要か? (2)

マルチトーン信号はなぜ必要か? (2)

OUTLINE

検索マルチバンドパス ΔΣ DA 変調器

DWA アルゴリズム

- 従来手法

- 提案手法

まとめ

SNDR低下のイメージ

非線形ノイズはなぜ生じるのか

通常の unary DAC

DWAの原理 ~DWA = $\Delta\Sigma$ ~

DWAの原理 ~DWA = $\Delta\Sigma$ ~

DWAの原理 ~DWA = $\Delta\Sigma$ ~

マルチバンドパス(ハイパス)

DWAの種類

DWAの種類

OUTLINE

検索マルチバンドパス ΔΣ DA 変調器

DWA アルゴリズム

- 従来手法

まとめ

複素DWAアルゴリズムの等価回路

複素DWAアルゴリズムの等価回路

◆ DACにポインタを付加
 ◆ NクロックごとにIとQの経路を入れ替える

複素DWA実現可能

		DAC 1					(LP 動作)							DAC ₂				(HP 動作)						
		l in	Qin	I 0		1	1 2		3	4	I 5	6	I 7	l in	Qin	l _o	I 1	I 2	I 3	I 4	5	6	I 7	
	ן ר	4	2											4	2									
		3	2											3	2									
)	2	6											2	6	-		in a ta	i en son de					
	2	2	1	an Galan shiqisiya sa Tangan tana sana s										2	1									
TIME		6	7						L			n de la companya de En companya de la comp		6	7			┥						
	-	1	5				Τ,		estate s					1	5			\leftarrow						
		7	4			5		i de de la		i da fan de se				7	4							∢		
		5	3			→								5	3		┥							

45/52 シミュレーション結果 ~理想線形DAC~

シミュレーション結果 ~非線形DAC~

シミュレーション結果 ~非線形DAC + DWA~


```
シミュレーション結果 ~非線形DAC + DWA~
```


▲ N=1 ● N=2 -⊖ N=4

OUTLINE

検索マルチバンドパス ΔΣ DA 変調器

DWA アルゴリズム

まとめ

- 通信用ICのテストのために、デジタル技術を
 利用した、I,Q信号生成法を提案
- 検素マルチバンドパス ΔΣ DAC
- ▶ マルチビットDACへの拡張
 - ◎ アナログフィルタの要求性能の緩和
 - ×線形性の劣化

低コストで、高品質な I,Q 信号生成を実現

まとめ

LSI微細化のトレンドにマッチ (アナログは最小限)

Q & A

農工大 富岡先生

【p.12】なぜRealよりComplexの方がSNDRが良くなったのか?

→ Realはws/2の幅で折り返しなので、ノッチが2個できてしまい、 1つ分の信号周りのノイズの広がりが狭くなってしまうため。

学生

【p.28】バラツキはなぜ生じる? その具合は?

→ 製造バラツキなので必ず生じてしまう。今回の資料内では標準偏差0.3%

会津大 小平先生

【p.26】線形性が劣化するといけない理由は?

→ 線形性の劣化 ⇒ ノイズとなるから。

【p.34】DWAでなぜノイズが低減できるのか?

→ 等価回路的にはΔΣと同じ原理。ノイズ成分のみ微分特性を通るから。 スライドには載ってないが式でも示せている。

A & **D**

中央大 築山先生

【p.35】マルチバンドパスの、ノッチの場所はコントロールできる?

→ 等間隔ではあるが、Nの数を増やすとノッチも増やせる。

→ それを素人にわかるように直感的に説明できる?

→ LPの伝達関数は(1-z^(-N))で書けるので、

(1-z^(-N)) = 0の解(ノッチの位置は)Nに比例する

【p.11】 複素信号の波形は、どんな感じ?

→ cos, sin単体なら見えるが、cos + j*sin は存在しないので見えない。 計算上での話。

東工大 高橋先生

- 【p.05】低コストで高品質が目的とあるが、低コストは何をもって低コストか? 時間?回路が安くできる?
 - → 時間ではない。一般的なアナログ手法(DSP+DAC+アナログフィルタ) にデジタル回路(ΔΣとDWA)を付加するということは、性能UPしつつ デジタルなのでコストは安く実現できる。

Q & A

東工大 高橋先生

- 【p.05】低コストで高品質が目的とあるが、低コストは何をもって低コストか? 時間?回路が安くできる?
 - → 時間ではない。一般的な①のアナログ手法(DSP+DAC+アナログフィルタ) にデジタル回路(ΔΣとDWA)を付加するということは、性能UPしつつ デジタルなのでコストは安く実現できる。
 - → 品質が高くなったことはどうやって示す?
 - → SNDRが理想線形DACのものに近づくほど高品質。
 - → アナログ手法に高コストでアプローチした場合(DACのビットを 増やすなど)と、デジタル複素手法(③)を性能面で比べた場合、 どちらが有利か?
 - → 確認していないが、おそらくほぼ同等。

【p.06】入力は何bit?

- → 比較的高め。14~16?
 - → なぜ最初から2~3bitでない? → (うまく応えられませんでした)