BSIM4 Modeling of 90nm n-MOSFET Characteristics Degradation Due to Hot Electron Injection

Takuya Totsuka
 Hitoshi Aoki Fumitaka Abe Khatami Ramin Yukiko Arai
 Shunichiro Todoroki Masaki Kazumi Wang Taifeng Haruo Kobayashi(Gunma University)

Supported by STARC

- Purpose, Background
- Consideration of Degradation Equations
- Simulation Results and Model Parameter Extractions
- Summary

Outline

- Purpose, Background
- Consideration of Degradation Equations
- Simulation Results and Model Parameter Extractions
- Summary

Purpose

Developed MOSFET model

HCl induced DC degradation model

Show deterioration DC characteristics of channel length dependence in simulation

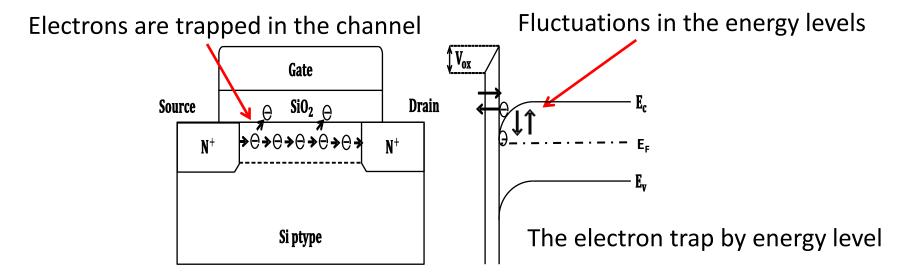
• 1/f noise model

Show simulation of deterioration 1/f noise at DC

Background

integrated circuits

high integration, miniaturization


- Manufacturing Variations
- Degradations of Circuit Performance Due to Time and Temperature

Reliability Simulation would also be performed in SPICE environment!

Generation Principle of 1/f noise

1/f noise: Occurred in all active elements such as transistors Dominant in the low frequency

$$S_{id}(f) = \frac{KF \cdot (I_{ds})^{AF}}{C_{OX}L_{eff}^2 f^{EF}}$$

What is Modeling

• Modeling:

Usually includes to develop a device model and to determine its model parameters

• Model:

Represent the behavior by equivalent circuit and equations programmed with C or Verilog-A language in a circuit simulator

Parameter Extractions:

Since there are many variables in model equations, they should be accurately determined with device measurements

Outline

- Purpose, Background
- Consideration of Degradation Equations
- Simulation Results and Model Parameter Extractions
- Summary

Degradation Phenomena of N-MOSFETs

Hot Carrier Injection (HCI)

- Carriers with energy accelerated by the high electric field
- Increase in threshold voltage arises from high electric field at drain area in saturation region
- Phenomenon is similar with 1/f noise generation mechanism

More dominant than PBTI in analog circuit design

Positive Bias Temperature Instability(PBTI)

Increase in threshold voltage arises from positive voltage stress for a long time

HCI Model

Initially introduced by Professor Hu (University California Berkeley) BErkeley Reliability Tools (BERT model)

Reaction-Diffusion model (RD model)

correspond BSIM4

- Modeled hot carrier effect
- Represented generation of hydrogen diffusion of particles

Reaction-Diffusion Model (1)

• Number of interface trap

$$N_{H(0)}N_{it} \approx \frac{k_F}{k_R}N_0$$
 (1)

 N_{H_x}

- N_{H(0)} Initial value of hydrogen concentration on interface
 N_{it} Number of interface trap
 k_F Oxide-field-dependent forward dissociation rate constant
 k_R Annealing rate constant
 N₀ Initial number of unbroken Si-H bonds
- Hydrogen reaction equation in channel / oxide interface

$= k_H N_H^{n_x}$	(2)	N _H k _H	Concentration of hydrogen particles per volume Reaction constant	
		n_x	Number of hydrogen atoms per hydrogen particles	

• Calculate interface trap number by number of Si-H bonds

$$N_{it} = \frac{\pi W}{2A_{tot}} n_x \int_0^{\sqrt{D_{H_x t}}} \left(N_{H_x(0)} \left[r - \frac{r^2}{\sqrt{D_{H_x t}}} \right] \right) dr$$
$$= N_{H_x(0)} \frac{\pi n_x}{12L} D_{H_x t} \quad \textbf{(3)} \quad \begin{bmatrix} D_{H_x t} & \text{Density of } N_H \\ A_{tot} & \text{Total area under transistor gate} \\ L & \text{Channel length of transistor} \\ W & \text{Channel width of transistor} \end{bmatrix}$$

Reaction-Diffusion Model (2)

 N_{it} is written as follows by combining (1), (2), with (3)

$$N_{it} = \left(\frac{k_F N_0}{k_R}\right)^{\frac{n_X}{1+n_X}} \left(\frac{n_X \pi k_H}{12L} D_H\right)^{\frac{1}{1+n_X}} * t^{\frac{1}{1+n_X}}$$
(4)

Voltage dependence represented as V_{th} shift

$$\Delta V_{th_{DEGRADATION}} = C_{HCI} \left(\frac{k_F N_0}{k_R}\right)^{\frac{n_X}{1+n_X}} \left(\frac{n_X \pi k_H}{12L} D_H\right)^{\frac{1}{1+n_X}} * t^{\frac{1}{1+n_X}}$$
(5)
$$D_H \qquad Density of hydrogen atoms t \qquad Time \\ C_{HCI} \qquad Technology-dependent parameter$$

Proposed Model

Threshold voltage shift due to HCI is implemented to mobility model equation Modeling of mobility degradation phenomenon

Mobility Model (2)

Directly assigned VTHO a parameter

Extraction, optimization and simulation MOBMOD = 2

$\mu_{eff} = \frac{U0}{1 + (UA + UC * V_{bseff}) \left[\frac{V_{gsteff} + C_0 (VTH0 - VFB - \emptyset_s)}{TOXE}\right]^{EU}}$ (6)

U0	Zero voltage carrier mobility	VFB	Flat-band voltage
UA	Primary factor of mobility degradation	V _{gsteff}	Effective value of V_{gs} - V_{th}
UC	Substrate effect factor of mobility degradation	V _{bseff}	Effective substrate voltage of source
TOXE	Electrical gate oxide thickness	Øs	Surface potential
VTH0	Threshold voltage at zero drain voltage	$\vec{C_0}$	Constant value

Threshold Voltage Degradation

Threshold voltage shift is successfully included!

$$V_{th} = VTH0 + \Delta V_{th, body_effect} - \Delta V_{th, carge_{sharing}} - \Delta V_{th, DIBL} + \Delta V_{th, reverse_short_cannel} + \Delta V_{th, narrow_{width}} + \Delta V_{th, small_size} - \Delta V_{th, pocket_implant} + \Delta V_{th_DEGRADATION}$$
(7)
$$\Delta V_{th_DEGRADATION} = C_{HCI} \left(\frac{k_F N_0}{k_R}\right)^{\frac{n_x}{1+n_x}} \left(\frac{n_x \pi k_H}{12L} D_H\right)^{\frac{1}{1+n_x}} * t^{\frac{1}{1+n_x}}$$
(5)

Outline

- Purpose, Background
- Consideration of Degradation Equations
- Simulation Results and Model Parameter Extractions
- Summary

Conditions for Our Experiments (1)

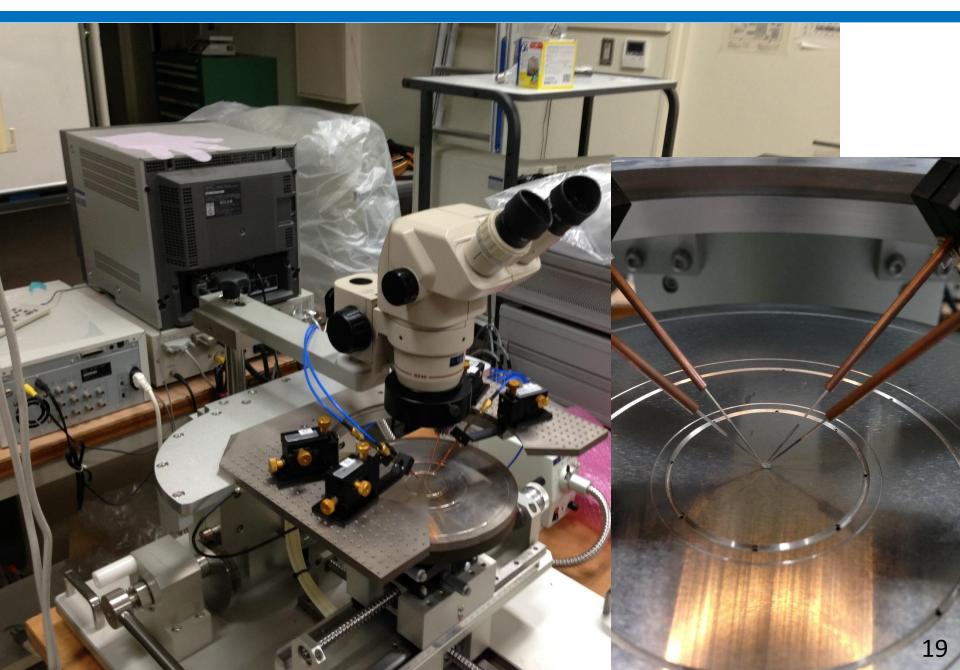
Target device:

90 nm process n-channel MOSFET

Device to be used for measurement and simulations:

- Large Channel Width 10.0μm
 Channel Length 10.0μm
- Short Channel Width 10.0μm
 Channel Length 0.1μm

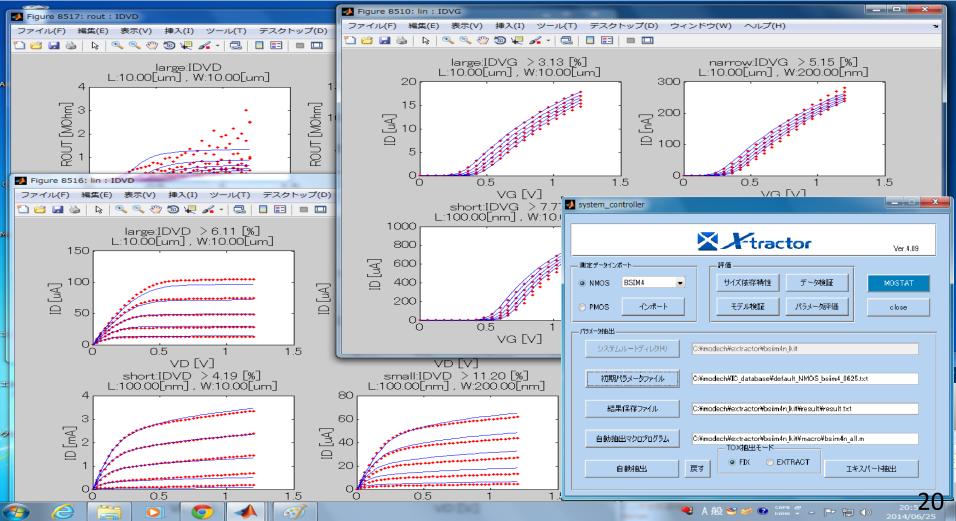
Conditions for Our Experiments (2)

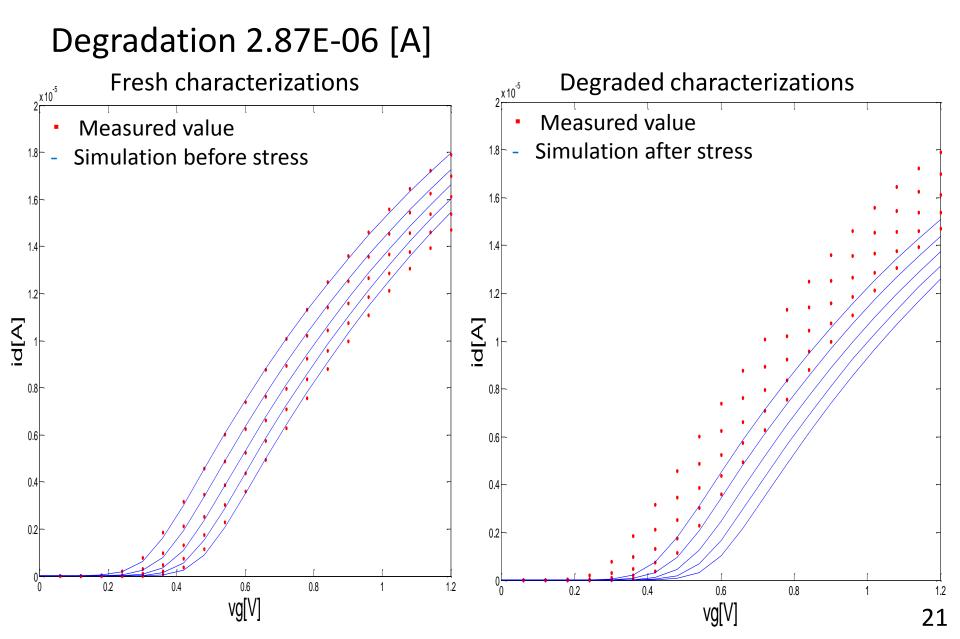

Stress condition

Degradation parameter is based on 65nm process device's, whereas our device is fabricated with 90nm process

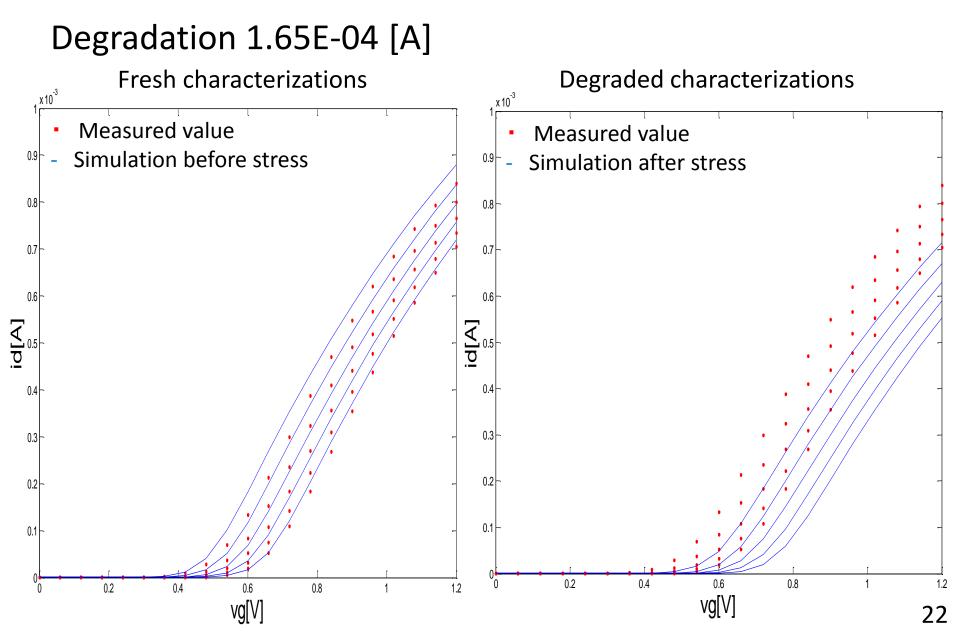
Temperature 300.15 [K]
Time 1,000 [hours]

Because of our resource limitations, degradation parameters are obtained from a paper


Measurement Environment

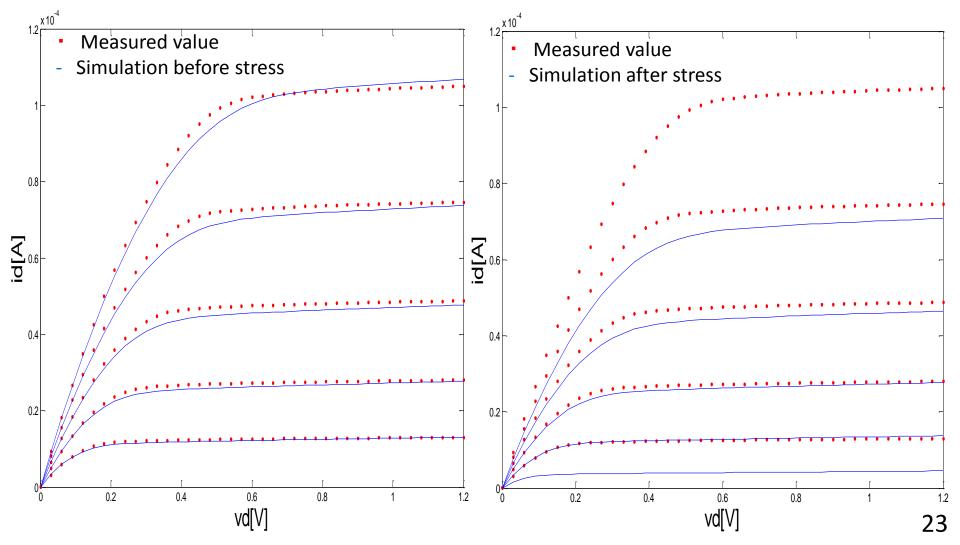

Modeling Software System

Extraction software MoDeCH Inc.


X-tractor

Large Id-Vg

Short Id-Vg

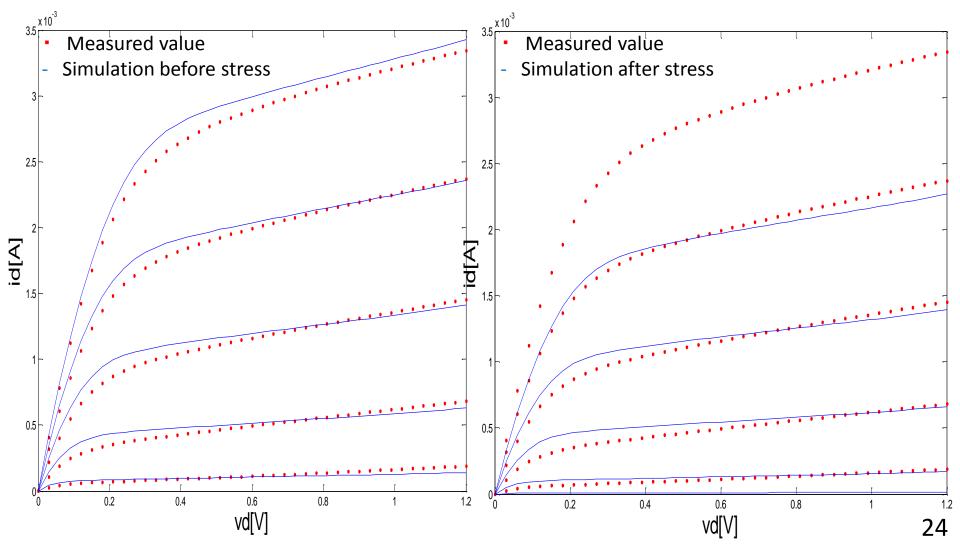


Measurement and Simulations (Id-Vd of Large)

Degradation 3.60E-05 [A]

Fresh characterizations

Degraded characterizations



Measurement and Simulations (Id-Vd of Short)

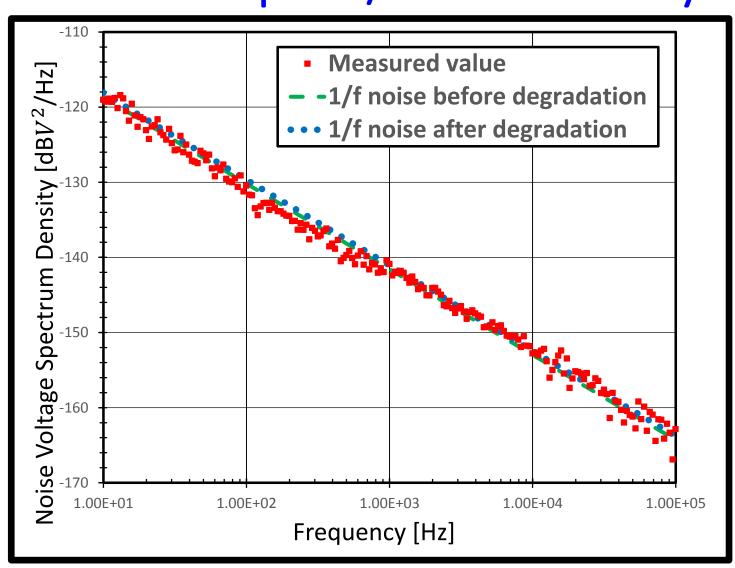
Degradation 1.16E-03 [A]

Fresh characterizations

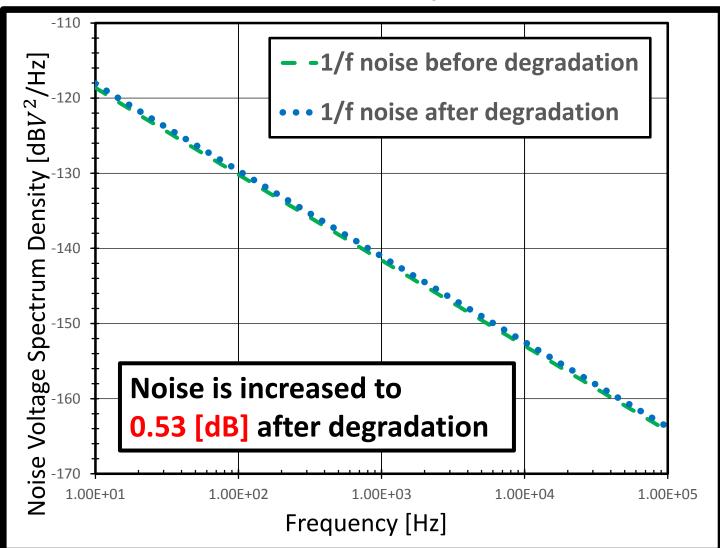
Degraded characterizations

1 / f Noise Measurements

Target device


90 nm process n-channel MOSFET

Stress conditions

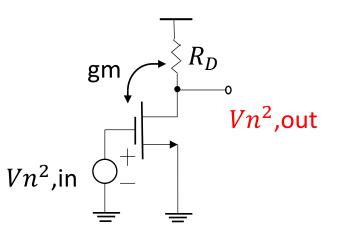

Degradation parameter is based on experimental data from 65nm process devices

- Temperature **300.15 [K]**
- Time **1000 [hours]**

Measurement and Simulation of Drain Output 1/f Noise Density

Simulation of Drain Output 1/f Noise Density

1/f Noise Characteristics


why stressed device noise at drain side is not increased

$$S_{I_{D}} = \frac{C_{OX} * \mu_{eff} * 2 * k * T * \alpha_{H_{nominal}} * D * e^{-(V_{gs} - V_{th})} * I_{ds}{}^{AF}}{C_{OX} L_{eff}{}^{2} f^{EF}}$$

$$V_{th} \uparrow \Rightarrow Ids \downarrow \Rightarrow S_{id} \downarrow$$

$$\alpha_{Hnormal} \uparrow \Rightarrow S_{id} \uparrow$$

Input Referred Noise

$$\overline{Vn^2}$$
, in $= \frac{\overline{I_n, ds^2}}{\overline{g_m^2}}$ $I_n, ds^2 = \frac{Vn, ds}{R_D}$

Outline

- Purpose, Background
- Consideration of Degradation Equations
- Simulation Results and Model Parameter Extractions
- Summary

Summary

- HCI degradation model was studied and implemented in BSIM4 of our MDW-SPICE simulator
- BSIM4 and degradation model parameters were extracted with measurements of 90nm n-channel MOSFETs
- Simulation verifications of DC drain currents were performed with and without bias stresses
- 1/f noise model parameters were extracted with measurements
- Simulation verifications of drain output 1/f noise density were performed with and without bias stresses

- ・劣化前後でアーリー電圧は変化しているのか
 ⇒計算していませんが、移動度が変化しているので 変化は起こっていると思います。
- Sパラメータの測定、抽出は行ったのか
 ⇒やっていない
- Due to HCI とするならストレス電圧をいろいろな電圧 を用いてやるといいのではないか。

質問は聞き取れなかったので後で聞きにいきました。