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Abstract— This paper describes redundancy algorithm 

design methods to improve reliability and conversion speed by 

digital error correction for Successive Approximation Register 

analog-to-digital converter (SAR ADC), based on number 

theory. Especially we show that using Fibonacci and Lucas 

sequences (which have interesting properties such as the closest 

terms ratio called “golden ratio” and realization of all terms 

with integers), we can design well-balanced redundancy 

algorithms for SAR ADC. We also present some derived 

equations and beautiful properties related to the redundancy 

design for SAR ADC using Fibonacci sequence. 
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I.  INTRODUCTION 

Recently, automotive electronics are gathering attention 
for industry competitiveness of vehicles. Therefore, SAR 
ADCs embedded in micro-controller for automotive 
electronics application need better performance such as high 
reliability, high speed and high resolution, and we study here 
about redundancy design of SAR ADCs to realize them. 

Redundancy design enables digital error correction for 
SAR ADC [1, 2]. One redundancy design method is to use a 
non-binary search algorithm instead of a binary search 
algorithm. There, extra comparison steps and a non-binary 
weighted DAC are needed for a redundant SAR ADC and 
we have to determine its non-binary weighted values. 
Generally, their values are determined using a non-binary 
radix or selected flexibly by the SAR ADC designer. These 
methods may not be efficient enough; in other words, the 
efficient and systematic redundant SAR ADC algorithm 
design has not been studied well yet. 

In this paper we discuss several methods to design 
redundant SAR algorithms based on number theory, and 
especially, we show that we can obtain well-balanced non-
binary weight values by applying properties of Fibonacci 
sequence such as the closest terms ratio called “golden ratio” 
and realization of all terms with integers (without fraction) 
[3]. Accordingly we show several important properties and 
their proofs of the redundancy design for SAR ADC utilizing 
Fibonacci sequence. 

II. SAR ADC 

SAR ADCs are used for medium sampling speed and 
high-resolution applications. Since they have features of low 
power, small chip area, they are widely applied to such as 
automotive, factory automation. Furthermore it does not 
require operational amplifiers, which is suitable for nano-
CMOS implementation. 

The SAR ADC consists of a sample-and-hold circuit, a 
comparator, a DAC, SAR logic and a timing generator (Fig 
1). For precise AD conversion, enough accuracy of the 
sample-and- hold circuit and the DAC is required. 

Conversion of the SAR ADC is based on principle of 
balance and generally it uses the binary search algorithm. 
Firstly, the sample-and-hold circuit acquires analog input 
voltage. Secondly, the comparator compares the input analog 
voltage and the reference voltage that is generated by the 
DAC and decides 1bit digital output. Thirdly, SAR logic 
provides DAC input based on the comparator output. The 
input voltage and the updated DAC output voltage are 
compared by the comparator. This operation is repeated and 
finally SAR ADC can obtain the whole digital output. 

Fig.2 shows the binary search algorithm of a 4bit SAR 
ADC. The bold line in Fig.2 indicates the reference voltage 
value to compare with the analog input at each step. Their 
values are calculated by either sum or difference between the 
last step reference voltage and the weighted voltage p(k) of 
each step as shown in Fig.2. The comparator outputs 1 if the 
input voltage is larger than the reference voltage; otherwise 
outputs 0. Then we obtain the digital output. In many cases, 
the weighted voltage p(k) is a binary weighted value because 
the binary search algorithm is popular as an efficient 
algorithm. 

 

Fig. 1. Block diagram of a 4bit SAR ADC.  
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Fig. 2. Binary search algorithm of a 4-bit 4-step SAR ADC. 

 However in actual applications there is possibility of 
comparator misjudgment due to DAC incomplete settling, 
and sample-and-hold circuit incomplete settling as well as 
noise. In the binary weighted SAR ADC (where binary and 
decimal codes are mapped to each other with one-to-one), 
one misjudgment of the comparator leads to incorrect output 
and low reliability. Hence this paper investigates redundancy 
design of SAR ADC to enable digital error correction for 
misjudgment of the comparator. 

 

III. REDUNDANCY DESIGN OF SAR ADC 

A. Summary of SAR ADC redundancy design 

Redundancy design is a popular technique to improve 
circuit and system performance. To apply the redundancy 
design to the SAR ADC means adding extra comparison [1, 
2]. This method changes binary weights to non-binary 
weights for the DAC and realizes digital error correction 
with redundancy property.  

Fig.3 shows an example of two redundant search 
operations of a 4bit 5step SAR ADC. There, the input 
voltage is 8.6LSB and the reference voltage weights p(k) are 
1, 2, 3, 6 and 8. The one operation (solid arrows) assumes 
that the comparison is correct, whereas the other (dotted 
arrows) assumed that it is incorrect. However both obtain the 
correct digital output of 8 by digital error correction. In the 
4bit 5step SAR ADC as shown in Fig.3, there are 25 
comparison patterns and 24 output patterns. In other words, a 
given output level can be expressed by multiple comparison 
patterns. Therefore even if comparator decision is wrong at 
some steps, the correct ADC output may be obtained. This is 
the basic principle digital error correction, which can 
contribute reliability improvement. In addition, even if the 
number of the comparison steps is increased, the digital error 
correction enables high-speed AD conversion as a whole, 

 

Fig. 3. Operation of a redundant search algorithm of a 4-bit 5-step SAR 

ADC in case of correct judgment and incorrect judgment. 

because the digital error correction can take care of the DAC 
incomplete settling [1]; thus redundancy design has potential 
for reliable and/or high-speed SAR AD conversion. 

B. Generalization of redundant SAR ADC design 

 We generalize SAR ADC redundancy design from using 
some equations [1]. If we realize an N-bit resolution SAR 
ADC by M-step comparison(M ≥ N), the reference voltage 
𝑉𝑟𝑒𝑓(𝑘) at k-th step and ADC output 𝐷𝑜𝑢𝑡  are defined by 

Eq.(1) and Eq.(2) respectively. Here k = 1,2,3,4, … , M and 
p(k) is the reference voltage weight value for addition to (or 
subtraction from) the DAC input in the previous step. 
Moreover, each d(k) is decided by the comparator output. If 
the comparator digital output at k-th step is 1, then d(k) = 1, 
and if the comparator digital output at k-th step is 0, then 
d(k) = -1. 

 𝐕𝐫𝐞𝐟(𝐤) = ∑ 𝐝(𝐢 − 𝟏)𝐩(𝐢)

𝐤

𝐢=𝟏

  (1) 

 𝐃𝐨𝐮𝐭 = 𝟎. 𝟓𝐝(𝐌) − 𝟎. 𝟓 + ∑ 𝐝(𝐢 − 𝟏)𝐩(𝐢)

𝐌

𝐢=𝟏

  (2) 

 where  𝐝(𝟎) = 𝟏   

We can also define “the redundancy at k-th step q(k)” as 
Eq.(3). 

 𝐪(𝐤) = −𝐩(𝐤 + 𝟏) + 𝟏 + ∑ 𝐩(𝐢)

𝐌

𝐢=𝐤+𝟐

 
 

 (3) 

Here q(k) indicates correctable difference between the input 
voltage and the reference voltage [1]. Even if the comparator 
result is wrong in the k-th step, we can obtain the correct 

output as long as q(k) > |𝑉𝑖𝑛 − 𝑉𝑟𝑒𝑓(𝑘)| is satisfied. Fig.4 

shows q(k) as an example of Fig.3. In Fig.4, one-way arrows 
indicate q(k), while two-way arrows show correctable input 

ranges. As shown in Fig.4, since q(1) > |𝑉𝑖𝑛 − 𝑉𝑟𝑒𝑓(1)| is 
satisfied, the SAR ADC can obtain the correct output in 
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Fig.3. Therefore q(k) expresses the digital error correction 
capability. Moreover q(k) is defined by only the reference 
voltage weight p(k) in Eq.(3), and thus p(k) is the most 
important parameter in the redundancy SAR ADC algorithm 
design. 

C. Conventional method to decide reference voltage weight 

 Only reference voltage weight p(k) decides correction 
capability of the redundant SAR ADC, which needs extra 
circuit elements to realize redundancy. However if the design 
of the reference voltage weight p(k) is not appropriate, the 
SAR ADC cannot have the maximum compensation ability. 

The ratio of the reference voltage weights p(k+1)/p(k) 
must be between 1(unary) to 2(binary). In conventional 
methods, we can obtain the k-th step reference voltage 
weight p(k) based on the radix x in Eq.(4). Here, N is the 
ADC resolution, and M is the number of the whole steps. 

 𝐩(𝐤) = 𝐱𝐌−𝐤  (4) 

Here 

  𝐩(𝟏) = 𝟐𝐍−𝟏  (5) 

 𝟏 < 𝐱 < 𝟐   

Additionally, the total number of steps M has to satisfy 
Eq.(6) to enable all output level expression. 

 
𝟐𝐍−𝟏 − 𝟏 ≤ ∑ 𝐩(𝐌 − 𝐢)

𝐌−𝟐

𝐢=𝟎

 
 

(6) 

We can systematically decide conditions for redundancy 
design based on the above equations. 

D. Conventional method Issues 

Conventional methods may have some issues. 

First, the reference voltage weight p(k) in Eq.(4) is not an 
integer which is not suitable for the circuit design. Since the 
reference voltage weights p(k) must be integers for 
conversion accuracy, its rounding to an integer is needed to 
determine p(k). However rounding operation causes 
changing of the radix and variability of the correction 
capability q(k) at each step, and they may disturb 
performance improvement. 

In addition, there is difficulty of appropriate radix choice. 
Fig.3 shows an example in case of radix 1.80 and using 
rounding. However in Fig.4, two-way arrows indicate that 
correctable input range cannot cover all input range, which 
means that there are some ranges that cannot be corrected. In 
Fig.4, if ADC input is not within the range of 1~3, 7~9, 
13~15[LSB], redundancy design becomes meaningless. Thus 
the inappropriate selection of a radix loses redundancy 
design effectiveness. On the other hand, the selection of a 
small radix to increase value of q(k) induces increasing of 
comparison steps and hence conversion time. In this way, 
there is a trade-off between correction capability and 
conversion speed, and the SAR ADC designer is forced to 
search a radix that is the most suitable for SAR ADC; these 
are causes of design difficulty. 

 
Fig. 4. Redundant search algorithm of a 4-bit 5-step SAR ADC and 

definition of correctable difference q(k).  

IV. REDUNDANCY DESIGN BASED ON FIBONACCI SEQUENCE 

 Redundancy design has possibility of a high reliability 
and high speed SAR ADC, but we need further investigation 
of designing the redundant algorithm. Then we propose here 
a redundancy design method based on “Fibonacci sequence”.  

A. Fibonacci sequence 

 Fibonacci sequence is defined by a recurrence relation as 
shown in Eq.(7), where n in Eq.(7) is an integer greater than 
or equal to 0. Fibonacci sequence is presented in 1202 by 
Leonardo Fibonacci, who was a mathematician in Italy and it 
is known as one of the most famous number theories [3]. 

 
𝑭𝒏+𝟐 = 𝑭𝒏 + 𝑭𝒏+𝟏 

 
(7) 

 where 𝑭𝟎 = 𝟎, 𝑭𝟏 = 𝟏   

Fibonacci numbers are expressed as the following by 
calculating Eq.(7). 

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 

1597, 2584, 4181… 

In short, the sum of neighboring two terms is next term. 

In addition, the closest terms ratio of Fibonacci sequence 
converges at about 1.62 as shown Eq.(8). 

 
𝐥𝐢𝐦
𝒏→∞

𝑭𝒏

𝑭𝒏−𝟏
= 𝟏. 𝟔𝟏𝟖𝟎𝟑𝟑𝟗𝟖𝟖𝟕𝟒𝟗𝟖𝟗𝟓 = 𝝋 

 
(8) 

This ratio is called “Golden ratio” and it is widely recognized 
as the most beautiful ratio. 

Fibonacci sequence and Golden ratio are based on very 
simple rules like the above. However we can find them in 
various places of our surroundings such as nature and 
humanity, and they have many interesting and unique 
properties. Thus they have been studied by many researchers 
for more than 800 years. 
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Fig. 5. Non-binary search algorithm using Fibonacci sequence of a 4-bit 6-

step SAR ADC. 

B. Fibonacci sequence application to redundant SAR ADC 

design 

 Eq.(7) indicates that Fibonacci sequence numbers are 
integers, and Eq.(8) indicates that the closest term ratio of 
Fibonacci number converges at about 1.62 called Golden 
ratio. In other words, Fibonacci sequence can generate a 
number string at radix 1.62 with only integer terms. In 
general, multiplication result of an integer and a decimal 
fraction is a decimal fraction, nevertheless multiplication 
result of an integer and a decimal fraction (1.62) is an integer 
in Fibonacci sequence. Therefore we can apply Fibonacci 
sequence to the redundancy algorithm design of the SAR 
ADC using effective properties of the fixed rate and integer 
terms. 

We select the reference voltage weight p(k) by using the 
Fibonacci sequence method as shown in Eq.(9).  

 𝐩(𝐤) = 𝑭𝑴−𝒌+𝟏 
 

(9) 

 𝐰𝐡𝐞𝐫𝐞  𝐩(𝟏) = 𝟐𝐍−𝟏   

In short, we set p(k) to Fibonacci number in ascending order. 
Since p(k) follows the property of Fibonacci sequence, the 
proposed method can realize radix 1.62 by using only 
integers. Here the total number of steps M is satisfies Eq.(6).  

Fig.5 shows a redundant search operation of a 4-bit 6-
step SAR ADC using Fibonacci sequence as shown in Eq.(9). 
One-way arrows indicate q(k) and two-way arrows show 
correctable input range as shown in Fig.4. 

C. Discovery and proof of the proposed method 

 We have discovered two interesting properties in Fig.5 as 
follows: 

1) Correctable difference q(k) is always Fibonacci 

number 𝐹𝑀−𝑘−1.  

2) q(k) of k-th step is exactly in contact with q(k+1) of 

k+1-th step without overlap. In other words, the tips of two-

way arrows of k-th step and k+1-th step point exactly the 

same level as shown in Fig.5. This means that Fibonacci 

weight is q(k) boundary between overlap and separating, 

and Fibonacci number weight is the fastest weight to contact 

with q(k) of adjacent two steps. 

 
Here we prove two above properties. 

(Proof of property 1) 

First, we determine sum of n (n = 1,2,3, … )  terms of 
Fibonacci numbers from the first term. Since n is an integer 
of 1 or more, it follows from Eq.(7) that 

 𝑭𝒏 = 𝑭𝒏+𝟐 − 𝑭𝒏+𝟏  
(10) 

Thus we can obtain the sum of Fibonacci numbers from 1 to 
n as follows: 

 
∑ 𝑭𝒊

𝒏

𝒊=𝟏

= 𝑭𝟏 + 𝑭𝟐 + 𝑭𝟑 + ⋯ + 𝑭𝒏 
 

 

 = 𝑭𝒏+𝟐 − 𝑭𝟐   

 = 𝑭𝒏+𝟐 − 𝟏  (11) 

The sum of Fibonacci numbers from 1 to n is equal to the 
value obtained by subtracting 1 from the Fibonacci number 
after two terms. 

Second, we assume the step number k value as shown in  
Eq.(12). 

 𝟏 ≤ 𝐤 < 𝐌 − 𝟏  (12) 

Since the correctable difference q(k) is defined by Eq.(3) and 
the reference voltage weight p(k) is defined by Fibonacci 
number as shown in Eq.(9), we have following: 

 
𝐪(𝐤) = −𝑭𝑴−𝒌 + 𝟏 + ∑ 𝑭𝒊

𝑴−(𝒌+𝟏)

𝒊=𝟏

 
 

(13) 

Here we transform Eq.(13) using Eq.(7) and Eq.(11) as 
follows: 

 𝐪(𝐤) = −𝑭𝑴−𝒌 + 𝟏 + (𝑭{𝑴−(𝒌+𝟏)}+𝟐 − 𝟏)   

         = −𝑭𝑴−𝒌 + 𝟏 + 𝑭𝑴−𝒌+𝟏 − 𝟏   

                 = 𝑭𝑴−𝒌+𝟏 − 𝑭𝑴−𝒌   

                 = 𝑭𝑴−𝒌−𝟏   

𝐹0 = 0 is the minimum number of Fibonacci number. Thus 
we can define considered area of k value as following: 

 𝐌 − 𝐤 − 𝟏 > 𝟎 

𝐤 < 𝐌 − 𝟏 
  

It shows that Eq.(12) is right. 
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Therefore we can obtain the correctable difference q(k) as 
Eq.(14) and we know that q(k) is always Fibonacci number. 

 𝐪(𝐤) = 𝑭𝑴−𝒌−𝟏  (14) 

                            (Q.E.D) 

(Proof of property 2) 

Reference voltage weight of k-th step (k ≥ 2)  is 
expressed by Eq.(9). Consequently, the reference voltage 
𝑉𝑟𝑒𝑓  has the difference of 𝐹𝑀−𝑘+1 for each step. We obtain 

Eq.(15) by transforming of Eq.(9) using Eq.(7). 

 𝐩(𝐤) = 𝑭𝑴−𝒌+𝟏

= 𝑭𝑴−𝒌 + 𝑭𝑴−𝒌−𝟏

= 𝑭𝑴−(𝒌−𝟏)−𝟏 + 𝑭𝑴−𝒌−𝟏 

 

(15) 

Here we replace Fibonacci number of Eq.(15) to the 
correctable difference q(k) by using Eq.(14), and we obtain 
Eq.(16) as follows: 

 𝐩(𝐤) = 𝐪(𝐤 − 𝟏) + 𝐪(𝐤)  (16) 

Reference voltage difference p(k) between (k-1)-th step and 
k-th step is expressed by sum of q(k-1) in (k-1)-th step and 
q(k) in k-th step. Thus q(k) of k-th step comes in contact 
with q(k+1) of k+1-th step. Moreover, since we can 
recognize that Eq.(16) is realized regardless of the number of 
steps, Fibonacci number weight is the fastest weight to 
contact with q(k) of adjacent two steps. 

                            (Q.E.D) 

D. Application of Lucas sequence 

 We consider application of Lucas sequence as 
development of using Fibonacci sequence to SAR ADC 
redundancy design. 

 Lucas sequence and Lucas number [3] are defined by 
Luca Edouard as Eq.(17). 

 𝑳𝒏+𝟐 = 𝑳𝒏 + 𝑳𝒏+𝟏  (17) 

 where 𝑳𝟎 = 𝟐, 𝑳𝟏 = 𝟏   

Lucas sequence is the one where the initial value of 
Fibonacci sequence is changed, and it is only the sequence 
that can realize golden ratio besides Fibonacci sequence. 
Property 2 of the redundancy design using Fibonacci 
sequence is valid on the condition that the radix is golden 
ratio 1.62. Hence we came up with the usage of Lucas 
number. 

Fig.6 shows a redundant search operation example of a 4-
bit 6-step SAR ADC using Lucas sequence as in Eq.(17). 
There the reference voltage weight p(k) is Lucas number in 
ascending order. We can discover two properties in Fig.6 
that q(k) is Lucas number and q(k) of k-th step comes 
exactly in contact with q(k+1) of k+1-th step. Their 
properties are the same as the properties of Fibonacci 
sequence redundancy design, which is due to the factor that 
formula of sum of terms from 1 to n is the same as Fibonacci 
number: therefore their properties can be proven in the same 
way. However the results re-confirm us that the golden ratio 
is boundary condition. 

E. Effectiveness of redundancy design using number theorys 

We have obtained two properties by applying Fibonacci 
sequence and Lucas sequence to the redundancy design. In 
particular, the property 2 is important for design of redundant 
SAR ADC algorithm due to the following two reasons: 

First, the property can be a standard of all redundancy 
design in the viewpoints of the radix of Fibonacci sequence 
and Lucas sequence which is golden ratio 1.62, and the 
boundary condition of q(k). Hence, we can assume that q(k) 
becomes overlap, non-overlap or separation by using golden 
ratio. If the radix value is larger than the golden ratio, the 
redundancy is small and q(k) boundaries are separated as 
shown in Fig.4. On the other hand, if the value of the radix is 
smaller than the golden ratio, the redundancy is large and 
q(k) boundaries are overlapped. Thus we can easily select the 
radix by considering the golden ratio as the standard. 

Second, the redundancy design using Fibonacci sequence 
and Lucas sequence can be considered as the most efficient 
design. The property 2 indicates that q(k) covers wide input 
range by minimum extra comparison steps. Therefore, we 
can realize the redundancy design without waste by only 
integer terms. Moreover even if we change the first step 
reference voltage, property 2 holds based on Eq.(16), which 
means that the redundancy design using Fibonacci sequence 
and Lucas sequence is flexible. By comparing Fibonacci and 
Lucas sequence weights, Lucas number weights are slightly 
bigger. Therefore Lucas number weights can realize fewer-
step SAR ADC. However Lucas number weights cannot 
compensate the third step from the last. So Fibonacci 
sequence is more suitable for redundancy design. 

The above two statements show that proposed method 
using Fibonacci sequence and Lucas sequence can solve the 
problems of conventional methods and contribute the 
efficient redundant algorithm design. 

 

Fig. 6. Non-binary search algorithm using Lucas sequence of a 4-bit 6-step 

SAR ADC.  
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Fig. 7. Principle of settling time acceleration with incomplete settling.  

V. DAC INCOMPLETE SETTLING 

A. Summary and Generalization of DAC Incomplete Settling 

An SAR ADC contains a DAC that outputs reference 
voltage by result of comparison at previous step. Since the 
DAC output must change from previous reference voltage to 
next one, the DAC output takes time to settle. In binary 
search algorithm which does not have correctable difference 
q(k), the DAC must take time to settle between output 
voltage of DAC and next reference voltage within 0.5LSB 
for accurate conversion. This DAC settling time often 
dominates the SAR ADC conversion time. Besides, this 
settling time is much longer for high resolution SAR ADC. 
On the other hand, in non-binary search algorithm which has 
correctable difference q(k), the DAC can decrease settling 
time, thanks to redundancy and digital error correction at the 
following steps as shown in Fig.7. Difference between the 
DAC output voltage and the next reference voltage can be 
smaller than q(k) to accurate conversion when conversion 
step has correctable difference q(k). 

We generalize SAR ADC incomplete settling by using a 
simple RC model (a first-order system) as shown Fig.7. 
(However, here we do not consider settling time to the first 
step reference voltage, or half-scale reference voltage.) 
Firstly, we can get output voltage of DAC as Eq.(18) from 
Fig.7. 

 𝐕𝐃𝐀𝐂(𝐭) = 𝐕𝐫𝐞𝐟(𝐤) + {𝐕𝐫𝐞𝐟(𝐤 − 𝟏) − 𝐕𝐫𝐞𝐟(𝐤)}𝐞−
𝐭
𝛕 (18) 

Here, τ is time constant of DAC output. 

To satisfy correctable condition at the redundant SAR 
ADC, difference between input voltage of the comparator 
and the reference voltage has to be smaller than q(k). Thus 
we can use comparison voltage Vcom, that has distance q(k) 
from the original reference voltage, to compare the input 
voltage. Consequently settling time Tsettle(k) which is the 
time to make k-th step comparison voltage can be the time to 
change the last comparison voltage Vcom(𝑘 − 1)  into next 
comparison voltage Vcom(𝑘).  As we should consider the 
longest settling time to decide each step settling time, we 
obtain settling time Tsettle(k) as Eq.(19) in Fig.8. 

 𝐓𝐬𝐞𝐭𝐭𝐥𝐞(𝐤) = 𝛕 𝐥𝐧 (
𝒑(𝒌) + 𝒒(𝒌 − 𝟏)

𝒒(𝒌)
) (19) 

Note that if correctable difference q(k) is less that 1LSB, we 
can regard q(k) as 0.5LSB. 

 

Fig. 8. Schematic diagram to derive settling time equation. 

Finally, a variable clock SAR ADC takes sum of Tsettle 
as total settling time. However, for a fixed clock SAR ADC 
total settling time is equal to the longest span of Tsettle 
multiplied by the number of steps of SAR ADC used.  

B. Analysis of Fibonacci SAR ADC settling time 

We consider settling time of the redundant SAR ADC 
using Fibonacci sequence in theory. In Fibonacci sequence 
SAR ADC, we can transform Eq.(19) to Eq.(20) by using 
Eq.(9) and property 1.  

 𝐓𝐬𝐞𝐭𝐭𝐥𝐞(𝐤) = 𝛕 𝐥𝐧 (
𝑭𝑴−𝒌+𝟏 + 𝑭𝑴−𝒌

𝑭𝑴−𝒌−𝟏
) (20) 

Here we transform Eq.(20) using Eq.(7) and Eq.(8) as 
follows: 

 

𝐓𝐬𝐞𝐭𝐭𝐥𝐞(𝐤) = 𝛕 𝐥𝐧 (
(𝐅𝐌−𝐤 + 𝐅𝐌−𝐤−𝟏) + 𝐅𝐌−𝐤

𝐅𝐌−𝐤−𝟏
)

= 𝛕 𝐥𝐧 (𝟐
𝐅𝐌−𝐤

𝐅𝐌−𝐤−𝟏
+ 𝟏)

= 𝛕 𝐥𝐧(𝟐𝛗 + 𝟏) 

 

Therefore we obtain settling time of k-th step at SAR ADC 
using Fibonacci sequence as shown Eq.(21). 

 𝐓𝐬𝐞𝐭𝐭𝐥𝐞(𝐤) = 𝟏. 𝟒𝟒𝟒𝛕 (21) 

Eq.(21) indicates that settling time is constant regardless of 
step number k or usage of variable clock. Likewise, Lucas 
sequence also realizes constant settling time owing to 
properties that are the same as properties of Fibonacci 
sequence. On the other hand, conventional method using 
radix cannot realize constant settling time, because reference 
voltage weight p(k) does not have relationship for 
correctable difference q(k).  

C. Simulation of Fibonacci sequence SAR ADC settling time 

We compare the method of Fibonacci sequence and the 
method of radix in terms of redundant SAR ADC settling 
time. We carry out comparison at 8bit SAR ADC under the 
condition that variable clock and fixed clock, and get Fig.9 
by using Eq.(19). In Fig.9, the vertical axis indicates total 
settling time and the horizontal axis indicates radix of 
conventional method. And total settling time of Fibonacci 
sequence is shown as a horizontal straight line in Fig.9 for 
comparison but radix of Fibonacci sequence is about 1.618. 
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Fig. 9. Result of each method settling time simulation with 0.001 increment 

of radix. 

TABLE I.  SAR ADC TOTAL SETTLING TIME 

 

 

From Fig.9, the lower radix ADC has, the shorter time 
ADC needs at variable clock. On the other hand, surprisingly, 
Fibonacci sequence can realize the shortest settling time at 
fixed clock. Results of total settling time at some resolution 
are shown in Table I. We see from Table I that total settling 
time using Fibonacci sequence is shorter than total settling 
time using radix in any resolutions. In case of Lucas 
sequence, settling time of method using radix is the shortest 
at both of the two-type clock. This result indicates that the 
proposed method of Fibonacci sequence is superior to 
conventional method of radix method from the perspective 
of conversion time. 

 

VI. CONCLUSIONS 

 In this paper we have proposed a redundancy SAR ADC 
algorithm design method with applying properties of 
Fibonacci sequence such as the closest terms ratio called 
golden ratio and realization of all terms with integer. As a 
result, we have obtained some important and beautiful 
properties of the radix, the error correctable range with 
digital calibration for the SAR ADC and incomplete settling 
time. Besides, we found that design method using Fibonacci 
sequence improves settling time compared to conventional 
redundant SAR ADCs. These results indicate that the 
proposed method using Fibonacci sequence contribute to 
realization reliable and high-speed SAR AD conversion. 
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6 8 10 12 14

Binary 11.20 20.26 32.06 46.61 63.95

Radix 8.31 11.63 14.26 17.04 19.81

Fibonacci 9 .00 13.33 17.66 21.99 26.33

Binary 17.33 33.96 56.14 83.87 117.14

Radix 12.47 17.70 22.53 28.97 33.27

Fibonacci 11.27 16.09 20.92 25.75 30.58
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