第37回アナログRF研究会 2014/12/03 @キャンパスプラザ京都

複素マルチバンドパスDACの 線形性向上アルゴリズム

○村上 正紘 小林 春夫 (群馬大学)

Supported by STARC

OUTLINE

・ 複素マルチバンドパス ΔΣ DA 変調器

トマルチビット DA 変調器

- 複素DWAアルゴリズム

- 自己校正アルゴリズム

OUTLINE

検索マルチバンドパス ΔΣ DA 変調器

トマルチビット DA 変調器

- 複素DWAアルゴリズム

- 自己校正アルゴリズム

まとめ

研究背景

研究目的

高品質なI,Qテスト信号を低コストで生成

I,Q信号生成法

① アナログ手法

② デジタル手法(1)

③ デジタル手法(2)

①アナログ手法

大きなナイキストレートのDAC

急峻なアナログフィルタ

7 /71

②デジタル手法(1)

②デジタル手法(1)~出カパワー~

②デジタル手法(1)~信号帯域~

10/71

2デジタル手法(2)~複素信号処理~


```
SNDRの比較~なぜ複素を用いるのか~
```


SNDRの比較~なぜ複素を用いるのか~

◇ 高品質な I,Q 信号

Complex signal processing is NOT complex. (K.Martin)

13/71

14/71

OUTLINE

・ 複素マルチバンドパス ΔΣ DA 変調器

トマルチビット DA 変調器

- 複素DWAアルゴリズム

- 自己校正アルゴリズム

まとめ

16/71複素バンドパスノイズシェープの原理

Power

$$I_{out} + jQ_{out} = \frac{H(z)}{1 + H(z)} (I_{in} + jQ_{in})$$

$$\rightarrow \omega \qquad 1$$

 $+\frac{1}{1+H(z)}(E_I+jE_Q)$

16/71複素バンドパスノイズシェープの原理

16/71複素バンドパスノイズシェープの原理

16/71複素バンドパスノイズシェープの原理

17/712次複素マルチバンドパスデルタシグマDAC

入力周波数 $f_1 \approx f_2$ のとき 3次IMD成分が信号帯域に入り込む

評価のために

マルチトーン信号はなぜ必要か? (2)

マルチトーン信号はなぜ必要か? (2)

OUTLINE

検索マルチバンドパス ΔΣ DA 変調器

トマルチビット DA 変調器

- 複素DWAアルゴリズム
- 自己校正アルゴリズム

SNDR低下のイメージ

28/71非線形性によって生じるノイズの発生原因

通常の unary DAC

非線形によって生じるノイズ対策

対策①

2次複素MBP ΔΣ DA Modu. + 非線形DAC + 複素DWA

• 対策2

2次複素MBP ΔΣ DA Modu. + 非線形DAC + 自己校正

非線形によって生じるノイズ対策

2次複素MBP ΔΣ DA Modu. + 非線形DAC + 複素DWA

• 対策2

固定小数点型

2次複素MBP ΔΣ DA Modu. + 非線形DAC + 自己校正

DWAの原理 ~DWA = $\Delta\Sigma$ ~

DWAの原理 ~DWA = $\Delta\Sigma$ ~

DWAの原理 ~DWA = $\Delta\Sigma$ ~ ノイズ by 非線形性

複素DWAアルゴリズムの等価回路

複素DWAアルゴリズムの等価回路

41/71等価回路の実現 Digital Analog ...1010 DAC **Complex** Bandpass Complex Digita Analog input $\Delta\Sigma$ Modulator Bandpass Filter output DAC ...0101 LP algorithm Ν \leftrightarrow CLK1 CLK1 CLK1 lin DAC₁ lout CLK2 0 Pointers CLK2Q Time CLK2Q CLK2/d CLK2/d Qin DAC₂ CLK1 Qout O-CLK1 **Pointers** HP algorithm

◆ DACにポインタを付加
◆ NクロックごとにIとQの経路を入れ替える

		D	٩C	1		(P	動	作)		DA		2		(H	Ρ	動	作)	
		I in	Qin	I 0	I 1		2	I 3	I 4	I 5	I 6	I 7	I _{in}	Qin	l ₀	I ₁	l 2	I 3	4	5	6	I 7
	ן ק	4	2										4	2	-							
		3	2										3	2								
C)	2	6			>							2	6	and source	olisatiite.	Handaa ayki kesi	arika ila anti	in dan kar			
	3	2	1				Γ						2	1								
TIME		6	7					Ц,				ententidi	6	7		Acalica i Malif	┥			a that the second		
		1	5				4						1	5								
		7	4			▶ "			ididdala	A CONTRACT			7	4						ni an Alf	<	
		5	3										5	3		╉						

43/71 シミュレーション結果 ~理想線形DAC~

シミュレーション結果 ~非線形DAC~

シミュレーション結果 ~非線形DAC + DWA~

シミュレーション結果 ~非線形DAC+DWA~

非線形によって生じるノイズ対策

2次複素MBP ΔΣ DA Modu. + 非線形DAC + 複素DWA

• 対策2

2次複素MBP ΔΣ DA Modulator のシミュレーション

48/71

2次複素MBP ΔΣ DA Modu. + 非線形DAC

・シミュレーション②(対策①)

2次複素MBP ΔΣ DA Modu. + 非線形DAC + 複素DWA

・シミュレーション③(対策2)

シミュレーション①

シミュレーション(2)

2次複素MBP ΔΣ DA Modu. + 非線形DAC + 複素DWA

シミュレーション(3)

2次複素MBP ΔΣ DA Modu. + 非線形DAC

+ 自己校正

何らかの方法で予め計測

52/71シミュレーション③(具体的な方法)

1. シミュレーション①の出力を計測

ΥĻ

フィードバックする数値を算出(Look Up Table の作成)

 シミュレーション①の回路に Look Up Tableブロック を挿入

53/71 シミュレーション③(具体的な方法)

1. シミュレーション①の出力を計測

フィードバックする数値を算出(Look Up Table の作成)

CLK(1)~CLK(4)の出力例を用いて次スライドから説明

Look Up Table

対応表

猫の年齢	人間の 相当年齢
1	20
2	27
3	33
4	39
5	45
6	50
7	55
8	60

55/71

Look Up Table

対応表

猫の年齢	人間の 相当年齢
1	20
2	27
3	33
4	39
5	45
6	50
7	55
8	60

Look Up Table

対応表

猫の年齢	人間の 相当年齢
1	20
2	27
3	33
4	39
5	45
6	50
7	55
8	60

DAC1	LUT入力	LUT出力
IUT	2	2.03
	5	4.97
	7	7.04
[1	0.99

AC2	LUT入力	LUT出力
UT	4	4.05
	2	2.04
	3	3.01
	5	4.98

シミュレーション③ (具体的な方法)

1. シミュレーション①の出力を計測

フィードバックする数値を算出(Iout_FB, Qout_FBの決定)

シミュレーション①の回路に Look Up Tableブロック を挿入

シミュレーション条件 ~DACのばらつきについて~ 標準偏差 1.0%の場合

自己校正法 まとめ

利点

DACの非線形性を測定さえできれば、 デジタル処理のみで良い

高精度なADCでDACの非線形性を測定する必要あり

OUTLINE

検索マルチバンドパス ΔΣ DA 変調器

トマルチビット DA 変調器

- 複素DWAアルゴリズム

- 自己校正アルゴリズム

まとめ

- 通信用ICのテストのために、デジタル技術を利用した、 I,Q信号生成法を提案
- ・ 複素マルチバンドパス ΔΣ DAC
- ▶ マルチビットDACへの拡張
 - ◎ アナログフィルタの要求性能の緩和
 - × 線形性の劣化

◎ DWAアルゴリズム ◎ 自己校正アルゴリズム

低コストで、高品質な I,Q 信号生成を実現

71/71

Q & A

東工大岡田先生(コメント)
・ 勘違いしているかもしれないが、今はナイキストのDACでも、
DACでオーバーサンプリングすればアナログフィルタは急にする
必要はない。帯域も充分取れる。
デルタシグマも必要ないかもしれない。

- ・送信機と受信機は対になっており、送信機でもある程度のSNが 取れるので、ループバックでテストは十分出来る。
 何か特別な特性を測りたいのであれば外付けで作る必要があるが。
- 研究のモチベーションをきちんと整理したほうが良いかもしれない。

Q & A

鹿児島大 大畠先生

・使用する周波数は?数ギガ(無線だから)でオーバーサンプリング 6倍とかするのは現実的に不可能。

→ 数ギガにするのはアップコンバージョンする前。

+数bitのDACは今では普通だし、"低ビット+デルタシグマ"
にしなくてもいいかも。

Q & A

中央大 杉山先生

- ・ 複素信号処理でRealより20dB良くなるという概念はどこかに あるのか?
 - → ない。自分で見つけた。
 - → アイデアは面白い。既知のものかそうでないか、 明らかにしたほうが良い。
- ・ DEM(デム; ダイナミックエレメントマッチング)との違いは?
 - → 基本のものは同じ。今回の論点はその応用の "複素の" DEM.
 - → DEMとは違うものだと思っていたので、

そこを明言して欲しかった。