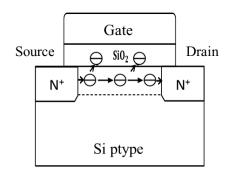
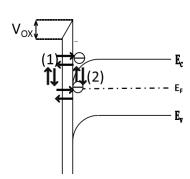
Gate Voltage Dependent 1/f Noise Variance Model in n-Channel MOSFETs

◯ Yukiko Arai
Hitoshi Aoki, Fumitaka Abe, Shunichiro Todoroki, Ramin Khatami,
Masaki Kazumi, Takuya Totsuka, Taifeng Wang, Haruo Kobayashi

Gunma University Electronic Engineering

Supported by STARC


Outline of our Research


Research Purpose

> Development of 1/f noise variance model in MOSFETs

Research Approach

1/f noise caused by Mobility Fluctuation and Interface Traps

Increase of

from the Si to the gate oxide between interface traps

Oscillator Circuits Noises

SPICE2 type model

- ① Interface Trap Number
- 2 Mobility Fluctuation
- 3 Process Variation
- 4 Time & Temperature Degradation

Research Goal

- Present the model derivation
- Implementation on our SPICE3 (MDW-SPICE) circuit simulator

Research Results

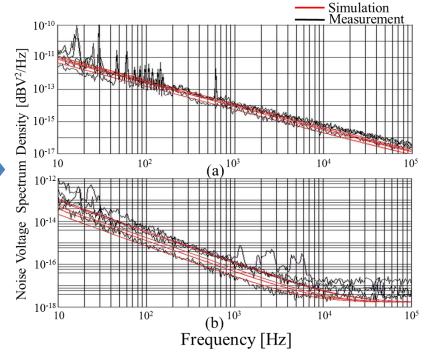
SPICE2 Model

Hooge's 1/f Model: Mobility Fluctuation Model

$$S_{I_D} = \frac{KF \cdot I_{ds}^{AF}}{C_{OX} L_{eff}^2 f^{EF}}$$

$$S_{I_D} = \frac{\alpha_H \cdot \mu_{eff} \cdot 2kT \cdot I_D}{fL^2}$$

Comparison with These Models


→ Variability model incorporated in mobility fluctuations

$$KF = C_{OX} \cdot \mu_{eff} \cdot 2 \cdot k \cdot T \cdot \alpha_{H_{nominal}} \cdot D \cdot e^{-(V_{gs} - V_{th})}$$

Simulation and Measurement Results

Proposed model agreed with measurement results!

