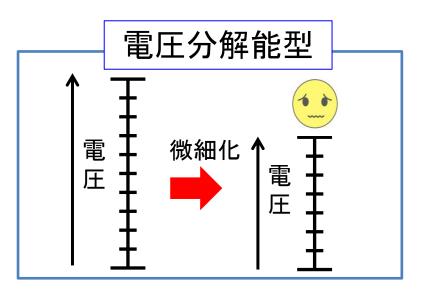
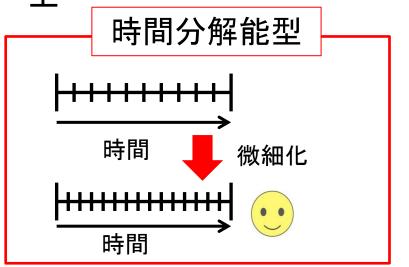
剰余系を用いた タイミング測定用回路の検討

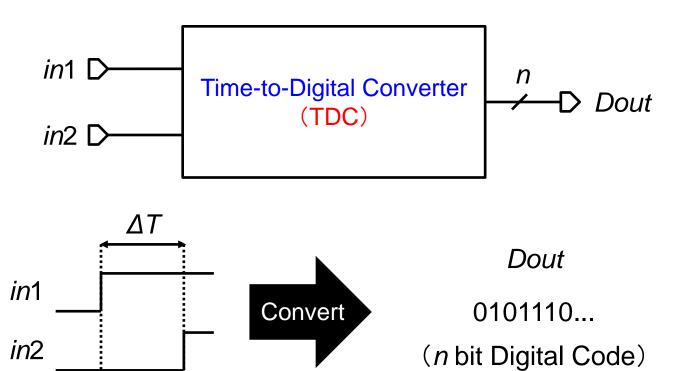
李从兵(群馬大学) 加藤健太郎(鶴岡高専) 王俊善小林春夫(群馬大学)


Supported by STARC


研究背景

微細化CMOS LSI

電源電圧の低下 動作スイッチングスピードの向 上

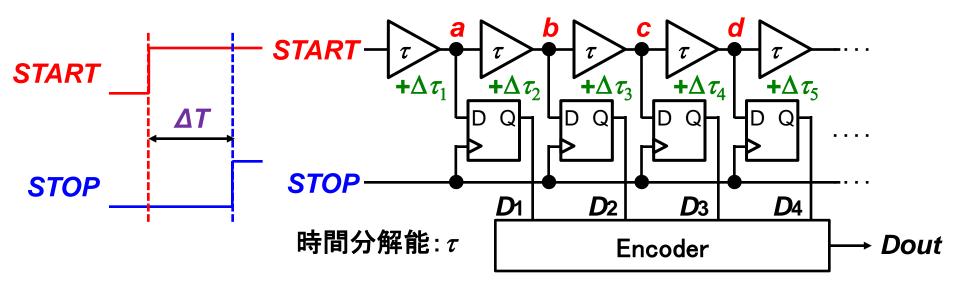


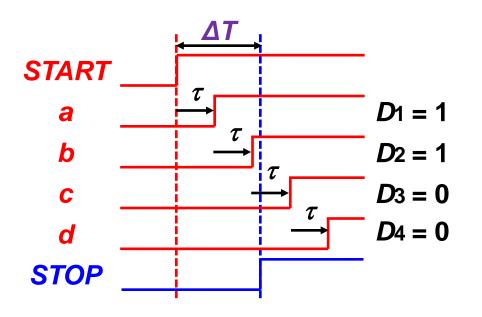
TDC(Time-to-Digital Converter)は2つのデジタル信号の時間差をデジタル値に変換

微細化CMOS LSIにおいて、TDCは時間領域アナログ回路のカギとなる

(センサ回路, All-Digital PLL,ADC,変調回路等)

タイムデジタイザ回路




2つのディジタル信号間の時間差 ATをディジタル値に変換

出力のディジタル値よりATを測定可能

フラッシュ型 TDCの構成と動作

- ▲T の大きさに比例したデジタル値 Dout を出力
- $lacksymbol{lack}$ 時間分解能 au

高エネルギー加速器研究機構 素粒子原子核研究所 新井康夫氏による発明

フラッシュ型TDCの回路規模の問題

START とSTOP の立ち上がりエッジ間の時間差 **ΔT** 測定範囲 0 < **ΔT** < N τ 時間分解能 τ

N = 1001 (千一)のとき フラッシュ型TDC では大きな回路規模、大きな消費電力

提案する剰余系TDC 1001= 7x11x13 同じ測定範囲、時間分解能で 7+11+13=31 個の 遅延セル、フリップフロップで実現できる

研究の目的

時間測定回路TDC

- LSIテストシステムのキーコンポーネント
- 時間信号であることを利用
 - → "剰余"が容易に得られる
- 剰余系を利用すると フラッシュ型TDCに比べ、同等性能で 小回路規模・低消費電力TDCが 実現できる可能性あり

剰余系TDC回路を検討する

「孫子兵法(孫子算経)」と剰余系

中国の剰余定理(Chinese remainder theorem)は 算術書『孫子算経』に由来する 整数の剰余に関する定理。 孫子の定理とも呼ばれる。

『孫子算経』には

「3で割ると2余り、5で割ると3余り、7で割ると2余る数は何か」 という問題とその解法が書かれている。 中国の剰余定理は、この問題を他の整数についても 適用できるように一般化したもの。

剰余系の例

基数 2,3,5 互いに素

N=2x3x5 = 30

0からN-1(=29) までの整数の一つを k

a: kを2 で割った余り a= mod2 (k)

b: k を3で割った余り b= mod3(k)

c: k を5 で割った余り c= mod5(k)

kと (a, b, c) の組は1対1に対応する。

kを (a, b, c)で表現 **■**

剰余表現

| 「京文学」 | 「京

中国人の剰余定理 (Chinese Remainder Theorem) (a, b, c) から kを求めるアルゴリズム

剰余系の例

基数 2, 3, 5 互いに素

N=2x3x5 = 30

0からN-1(=29) までの整数の一つを k

a: kを2 で割った余り a= mod2 (k)

b: k を3で割った余り b= mod3(k)

c: k を5 で割った余り c= mod5(k)

k と (a, b, c) の組は1対1に対応する。 k を (a, b, c) で表現 → 剰余表現

剰余定理 (Chinese Remainder Theorem) (a, b, c) から k を求めるアルゴリズム

自然数 k と剰余表現 (m1, m2, m3) は 1 対 1 対応

mı	m2	m3	k	
0	0	0	0	
1	1	1	1	
0	2	2	2	
1	0	3	3	
0	1	4	4	
1	2	0	5	
0	0	1	6	
1	1	2	7	
0	2	3	8	
1	0	4	9	
0	1	0	10	
1	2	1	11	
0	0	2	12	
1	1	3	13	
0	2	4	14	

mı	m2	m3	k	
1	0	0	15	
0	1	1	16	
1	2	2	17	
0	0	3	18	
1	1	4	19	
0	2	0	20	
1	0	1	21	
0	1	2	22	
1	2	3	23	
0	0	4	24	
1	1	0	25	
0	2	1	26	
1	0	2	27	
0	1	3	28	
1	2	4	29	

剰余定理は、

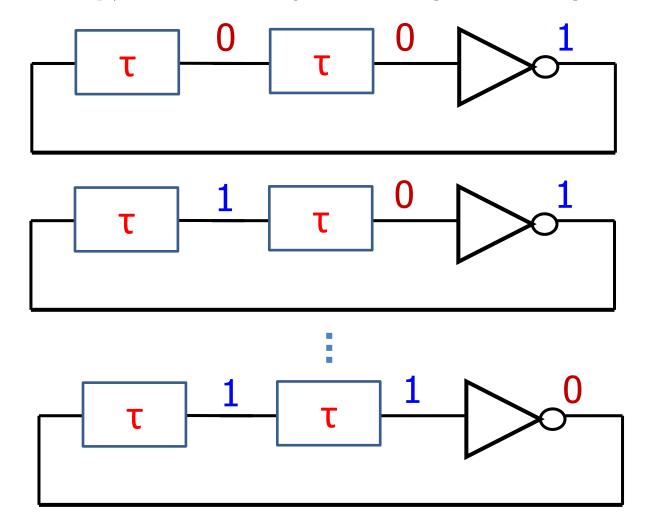
この問題を他の整数についても適用できるように一般化したもの。

剰余系TDCの原理

三つのリング発振回路(遅延2t, 3t, 5t)を利用し、 発振している状態から経過時間Tの測定を行う。

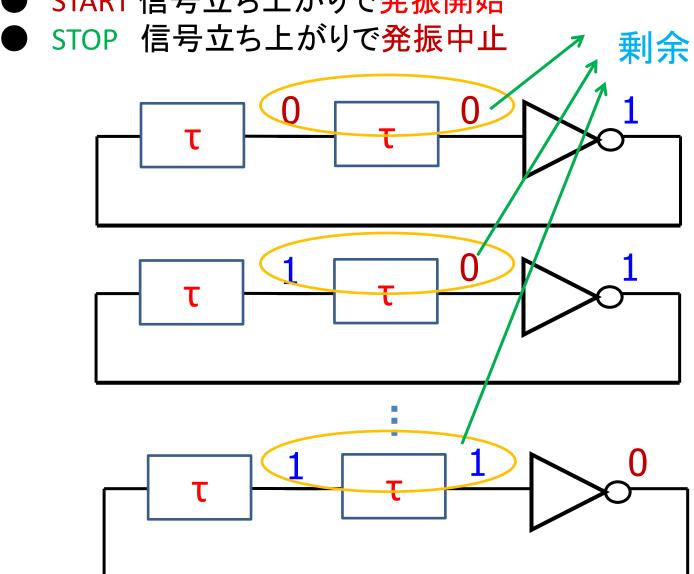
Tを2τで割った余りはa

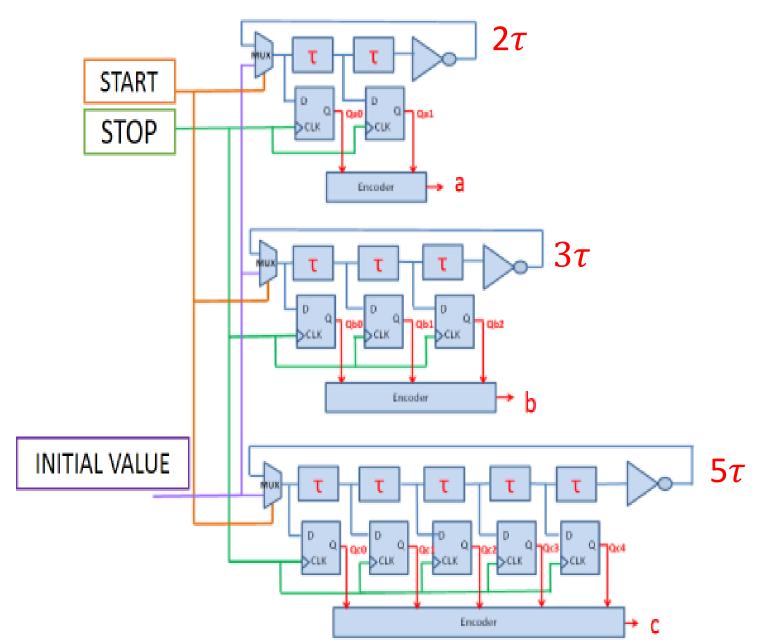
Tを3τで割った余りはb


Tを5τで割った余りはc

Kを計算する

 $T = k \times \tau$

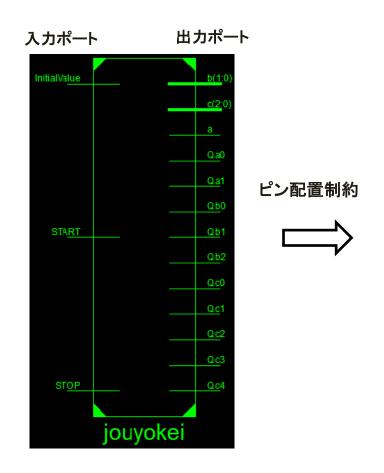

リング発振回路で剰余が容易に得られる

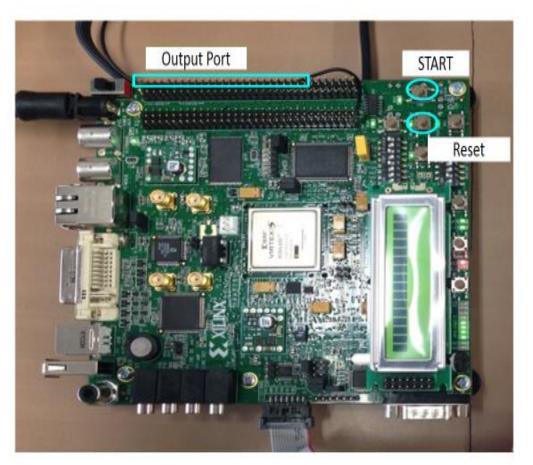

考察 TDCでは取り扱う入力信号が時間信号なので リング発振回路構成により剰余が容易に得られる。 電圧信号を入力とするADCでは剰余を得るのは簡単ではない。11

リング発振回路で剰余を得る

● START 信号立ち上がりで発振開始

提案する剰余系TDCの回路図



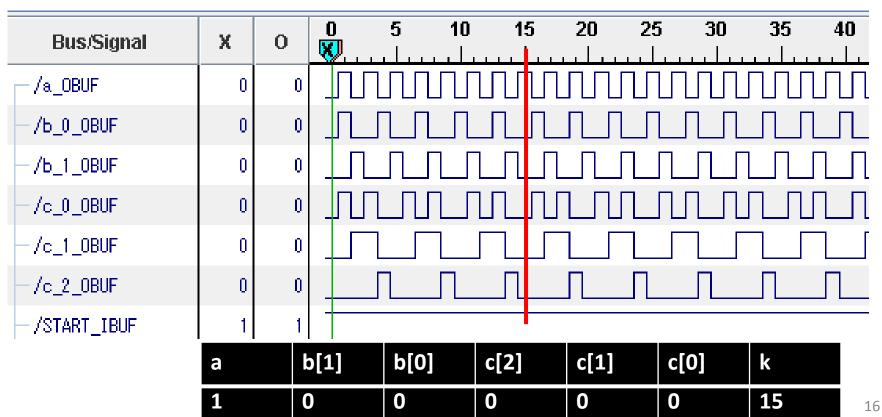

FPGA実装(1/4)

STOPポートの入力: 100MHz FPGA クロック

Buffer_CLKポートの入力: 33MHz FPGA クロック(バッファの

遅延 $\tau = 30.30 \text{ns}$)

Xilinx社 Virtex5 XC5VLX50-FFG6764

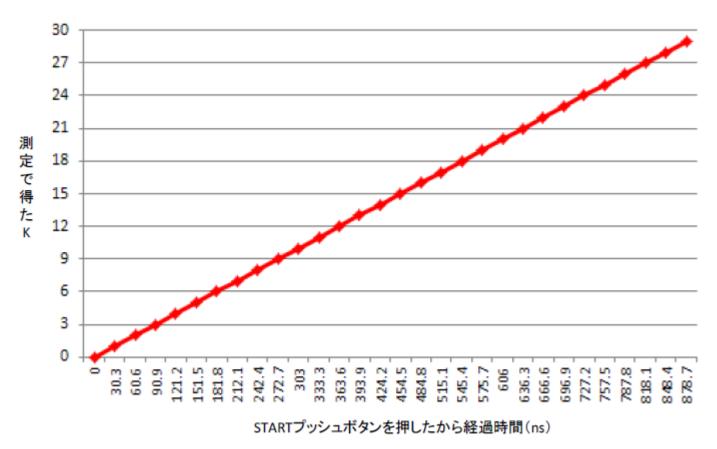

FPGA実装(2/4)

FPGA実装(3/5)

三つのTDC回路(遅延は2クロック周期、3クロック周期、5クロック周期)を利用

- Tを2クロック周期で割った余りはa
- Tを3クロック周期で割った余りはb
- Tを5クロック周期で割った余りはc
- ⇒剰余定理でT=kXクロック周期

FPGA実装(3/4)


ASCII データ変換

START とSTOPの時間差 = k x バッファ遅延(30.30ns)

Sample in Window	Elapsed Time(ns)	а	b[0]	b[1]	c[0]	c[1]	c[2]	k
0	0.00	0	0	0	0	0	0	0
3	30.30	1	1	0	1	0	0	1
6	60.60	0	0	1	0	1	0	2
9	90.90	1	0	0	1	1	0	3
12	121.20	0	1	0	0	0	1	4
15	151.50	1	0	1	0	0	0	5
18	181.80	0	0	0	1	0	0	6
21	212.10	1	1	0	0	1	0	7
24	242.40	0	0	1	1	1	0	8
27	272.70	1	0	0	0	0	1	9
30	303.00	0	1	0	0	0	0	10
33	333.30	1	0	1	1	0	0	11
36	363.60	0	0	0	0	1	0	12

FPGA実装(4/4)

剰余系TDC回路はFPGAで実現できることが示された。

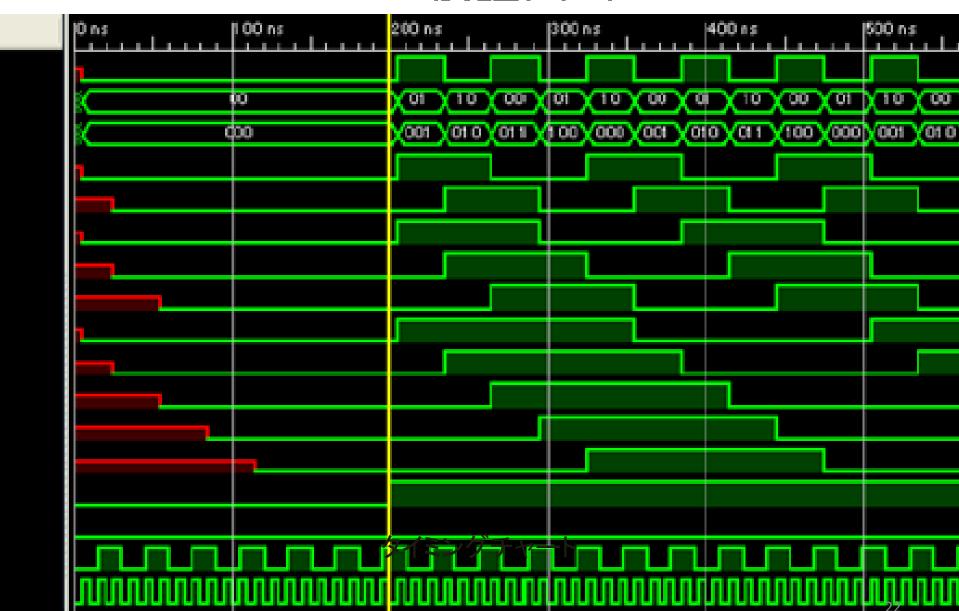
経過時間 VS. 測定で得た k

まとめと今後の課題

- 提案剰余系TDC回路は時間測定が可能であることを確認し、 FPGA で実現できることを示した。
- バッファの個数とリング発振回路の個数を増減すると、 提案TDC 回路は他の剰余数系にも適用できる。他の剰余数系のTDC 回路もFPGA で実現可能である。
- 提案TDC回路で、使用した遅延バッファとフリップフロップの数は10個。
 同等性能フラッシュ型TDC回路では、29個である。
 剰余系を利用したTDC回路は、回路面積、消費電力が低減できる。
- 今後の課題:
 - 三つのチャネルTDC 間の特性ばらつきの影響の検討
 - 大きな誤差を生じる可能性があるかどうか、
 - 冗長構成で対応可能かどうか

- 一般論として、現状産業界では
- アナログBISTは実用化が限定。
- アナログBOST は現実的選択。

Analog BIST or BOST? That is the question.


Hamlet

集積回路分野の研究者 フルカスタムIC重視、(アナログ)FPGAに関心少ない傾向

(アナログ)FPGAは「破壊的イノベーション」になる(?)

ご清聴ありがとうございます

RTL検証(1/2)

RTL検証(2/2)

STOP 信号 の値(ns)	発振から 経過時間	а	b	O	計算 した k
200	0 x 30.30ns	0	00	000	0
230.30	1 x 30.30ns	1	01	001	1
260.60	2 x 30.30ns	0	10	010	2
290.90	3 x 30.30ns	1	00	011	3
321.20	4 x 30.30ns	0	01	100	4
351.50	5 x 30.30ns	1	10	000	5
381.80	6 x 30.30ns	0	00	001	6
412.10	7 x 30.30ns	1	01	010	7
442.40	8 x 30.30ns	0	10	011	8
472.70	9 x 30.30ns	1	00	100	9
503.00	10 x 30.30ns	0	01	000	10
533.30	11 x 30.30ns	1	10	001	11
563.60	12 x 30.30ns	0	00	010	12
593.90	13 x 30.30ns	1	01	011	13
624.20	14 x 30.30ns	0	10	100	14
654.50	15 x 30.30ns	1	00	000	15
684.80	16 x 30.30ns	0	01	001	16
715.10	17 x 30.30ns	1	10	010	17
745.40	18 x 30.30ns	0	00	011	18
775.70	19 x 30.30ns	1	01	100	19
806.00	20 x 30.30ns	0	10	000	20
836.30	21 x 30.30ns	1	00	001	21
866.60	22 x 30.30ns	0	01	010	22
896.90	23 x 30.30ns	1	10	011	23
927.20	24 x 30.30ns	0	00	100	24
957.50	25 x 30.30ns	1	01	000	25
987.80	26 x 30.30ns	0	10	001	26
1018.10	27 x 30.30ns	1	00	010	27
1048.40	28 x 30.30ns	0	01	011	28
1078.70	29 x 30.30ns	1	10	100	29