群鸟大学 小林研究室

2014年12月1日

電子情報通信学会 集積回路研究会 学生·若手研究会

デルタシグマ型変調技術を用いた 時間デジタル変換回路 ~時間領域アナログ回路のキーコンポーネント~

群馬大学大学院理工学府電子情報部門 小林春夫 k_haruo@el.gunma-u.ac.jp

Gunma University Kobayashi-Lab

お話しする内容

講演者の研究室で研究開発を行ってきています、 2つのクロック間の立ち上がり時間差を高時間分解能で測定する デルタシグマ型タイムデジタイザ回路について 下記の内容をご紹介します。

- (1) デルタシグマ型タイムデジタイザ回路の構成と動作
- (2) 開発した高精度化のアルゴリズムと

そのMATLABシミュレーションによる効果確認

(3) 回路設計、アナログFPGA(PSoC)実現、測定評価結果(4) 若手研究者・学生に贈る言葉

発表目次

- (1) 時間分解能回路の研究背景
- (2) デルタシグマ型タイムデジタイザ回路
 - デルタシグマ変調技術
 - デルタシグマ型タイムデジタイザ回路の構成と動作
 - アナログFPGA実現
- (3) マルチビットデルタシグマ型タイムデジタイザ回路
 - マルチビット変調器の問題点
 - DWAアルゴリズム
 - アナログFPGA実現
- (4) まとめ
- (5) 若手研究者・学生に贈る言葉

発表目次

- (1) <u>時間分解能回路の研究背景</u>
- (2) デルタシグマ型タイムデジタイザ回路
 - デルタシグマ変調技術
 - デルタシグマ型タイムデジタイザ回路の構成と動作
 - アナログFPGA実現
- (3) マルチビットデルタシグマ型タイムデジタイザ回路
 - マルチビット変調器の問題点
 - DWAアルゴリズム
 - アナログFPGA実現
- (4) まとめ
- (5) 若手研究者・学生に贈る言葉

時間分解能回路の研究背景

時間信号測定回路は時間領域アナログ回路のキーコンポーネント

研究目的(1)

- 2つの繰返しクロック間の時間差テスト
 DDR(Double Data Rate)メモリの
 データ クロック間の時間差テスト等
- ●組込み可能な測定回路

6

- 短時間、高精度でテストする回路の実現
- <u>ΔΣ TDC</u>
- •高時間分解能
- •回路量:小
- •測定時間:長(測定時間∝精度)

- マルチビット $\Delta\Sigma$ TDCの提案
- マルチビット化に伴う非線形性 補正手法の提案

研究目的(2)

<u>時間信号測定回路の高性能化とアプリケーションの開発</u>

時間信号測定回路:タイムディジタイザ回路 (Time-to-Digital Converter:TDC)

高性能TDCの開発と実装

- 自己校正機能を備えたフラッシュ型TDC(Flash TDC)
- デルタシグマ型TDC(ΔΣ TDC)

TDCを用いた新しいアプリケーションの開発

ΔΣ TDCによる位相ノイズ測定

タイムデジタイザ回路

2つのディジタル信号間の時間差 ΔT をディジタル値に変換

出力のディジタル値より AT を測定可能

- ▲Tの大きさに比例した
 デジタル値 Doutを出力
- 時間分解能 τ

高エネルギー加速器研究機構 素粒子原子核研究所 新井康夫氏による発明

フラッシュ型TDCの特長

•フラッシュ型TDC

- ・任意の信号でも1回の入力で計測可
- •回路規模:大
- ・時間分解能: τで決まる
- ・繰返し信号の計測
 > 何回も入力 ⇒ 高精度で測定

11

測定時間に比例して時間分解能が向上

(1) 時間分解能回路の研究背景

(2) <u>デルタシグマ型タイムデジタイザ回路</u>

- デルタシグマ変調技術
- デルタシグマ型タイムデジタイザ回路の構成と動作

発表目次

● アナログFPGA実現

(3) マルチビットデルタシグマ型タイムデジタイザ回路

- マルチビット変調器の問題点
- DWAアルゴリズム
- アナログFPGA実現
- (4) まとめ

(5) 若手研究者・学生に贈る言葉

ΔΣ TDCの構成

13

ΔΣ AD/DA変調技術

 アナログ最小、デジタルリッチな構成 ナノCMOSではデジタルは大きな恩恵
 スピードを精度に変換 ナノCMOSではスピードに余裕
 高精度なデバイス、回路不要

> ナノCMOSで高精度なAD/DACを 実現するのに適した構成

1960年 安田靖彦先生(当時 東大大学院生 現 東大・早稲田大学名誉教授)が考案。

●近年の集積回路技術の進展に適した方式
 ▶ 活発に研究・開発、実用化。
 ◆ AD/DA変換器、完全デジタルPLL回路時間デジタイザ回路等幅広く応用。
 ◆ 性能向上が著しい

発明者の安田靖彦先生に偶然にお会いする16

2011年11月29日(火) 於 スウェーデン大使館

新津葵一先生 エリクソン・ヤング・ サイエンティスト・アワード 受賞式 懇親会にて

新津先生

安田先生は 審査員のお一人

ΔΣか ΣΔか

ΔΣ(デルタシグマ) 安田靖彦先生の主張 ΣΔ(シグマデルタ) IEEE の論文

 $\Delta\Sigma$ or $\Sigma\Delta$? That is a question.

17

Hamlet

発明者の安田先生にしたがい ∧∑

ΔΣ AD変調器の構成

入力を積分してからム変調

Vin

量子化誤差

ノイズシェーピング

ΔΣ AD 変調器の構成

ΔΣ AD変調の等価実現

量子化ノイズを高域に移し、帯域内ノイズを低減

ΔΣADCの構成と回路

(1) 時間分解能回路の研究背景

(2) <u>デルタシグマ型タイムデジタイザ回路</u>

- デルタシグマ変調技術
- デルタシグマ型タイムデジタイザ回路の構成と動作

発表目次

● アナログFPGA実現

(3) マルチビットデルタシグマ型タイムデジタイザ回路

- マルチビット変調器の問題点
- DWAアルゴリズム
- アナログFPGA実現
- (4) まとめ

(5) 若手研究者・学生に贈る言葉

ΔΣTDCの原理

ΔΣTDCの構成

24

・比較器出力により経路選択 → CLK1a, CLK2aを得る

25

・比較器出力により経路選択 → CLK1a, CLK2aを得る

・比較器でINT_{out}を0と比較し、出力 D_{out} を得る \rightarrow 次のクロックでの経路を制御

・位相差CLK_{in}を出力

・比較器でINT_{out}を0と比較し、出力 D_{out} を得る \rightarrow 次のクロックでの経路を制御

(1) 時間分解能回路の研究背景

(2) <u>デルタシグマ型タイムデジタイザ回路</u>

- デルタシグマ変調技術
- デルタシグマ型タイムデジタイザ回路の構成と動作

発表目次

● アナログFPGA実現

(3) マルチビットデルタシグマ型タイムデジタイザ回路

- マルチビット変調器の問題点
- DWAアルゴリズム
- アナログFPGA実現
- (4) 位相ノイズ測定への応用の検討

(5) まとめ

実機PSoCを用いた実装・検証

Programmable System-on-Chip(PSoC) Cypress Semiconductor社

配線の変更によりアナログ・ディジタル混載回路を自由に設計可能

PSoCで実現する利点

- ・低コスト
- ・開発期間が短い
- オンチップでデバッグ・修正が可能
- •試験結果を容易に出力可能

ΔΣ TDCを実装したPSoC

PSoC実装したΔΣ TDC回路

33

位相比較器

NAND型位相比較器

立ち上がりのタイミング

CLK1aとCLK2aの立ち上がりエッジのタイミングにより 出力が異なる

チャージポンプ回路

• オペアンプの仮想短絡を利用

電圧源と抵抗で電流を発生

基本型チャージポンプ

オペアンプ型チャージポンプ

コンパレータの回路設計

MOS	W[μ m]/L[μ m]
PMOS	6/0.18
NMOS	2/0.18

Vout->Vout+→Dout=1 Vout-<Vout+→Dout=0

1ビットΔΣ型TDC

シミュレーション条件

	High/Low	周波数	パルス幅
CLK1,CLK2	1.8V/0V	10MHz	50ns

電源電圧Vdd=1.8V シミュレーション時間5us spectreで設計 (TSMC0.18um CMOSプロセス)

シミュレーションの初期条件とパルスの数え方 40

初期条件

• コンデンサの両端を1usまで短絡

パルスの数え方

Doutの波形・CLK1先に立ち上がる場合

CLK1が先に立ち上 がる場合

Doutの波形・CLK2先に立ち上がる場合

CLK2が先に立ち上 がる場合

出力のまとめ

CLK2が先に

CLK1が先に 立ち上がる

$\Delta T(ns)$	1の数
0.95	39
0.9	38
0.8	36
0.7	34
0.6	32
0.5	30
0.4	28
0.3	26
0.2	24
0.1	22
0	20

立ち上がる	
$\Delta T(ns)$	1の数
0.95	1
0.9	2
0.8	4
0.7	6
0.6	8
0.5	10
0.4	12
0.3	14
0.2	16
0.1	18
0	20

※動作時間4us

時間差0.1n毎 にパルス数が 2づつ変化

分解能50ps

シミュレーションで確認

発表目次

(1)時間分解能回路の研究背景 (2)デルタシグマ型タイムデジタイザ回路

- デルタシグマ変調技術
- デルタシグマ型タイムデジタイザ回路の構成と動作
 アナログFPGA実現
- (3) <u>マルチビットデルタシグマ型タイムデジタイザ回路</u>
 - マルチビット変調器の問題点
 - DWAアルゴリズム
 - アナログFPGA実現
- (4) まとめ
- (5) 若手研究者・学生に贈る言葉

<u>シングルビットΔΣ TDC回路の構成 45</u>

- CLK1とCLK2間の時間差を計測
- ・出力は時間差Tに比例 ⇒ 1の個数でTを測定可
- D_{out}で経路制御
- 測定可能範囲: -τ < T < τ

•積分制御のフィードバック構成

- ・遅延セル、マルチプレクサを増やしマルチビット化
- n-bitの場合: 2ⁿ-1本の出力
- 測定可能範囲: -7τ < T < 7τ
- ・Flash ADCの出力結果で経路選択

マルチビット $\Delta\Sigma$ TDCの構成

マルチビットにする利点

シングルビットΔΣ TDC

- ・ 遅延ミスマッチが影響しない
- ・精度が出せる
- ・ 測定時間が長い
- マルチビットΔΣ TDC
 - 測定時間を短縮可能
 - 補正技術を適用することで精度が保てる

<u>テスト:短時間,テスト精度の向上が重要</u>

マルチビット化によりテスト時間が短縮

ΔΣ TDCのMATLABシミュレーション結果 49

● シミュレーション条件

	1-bit $\Delta\Sigma$ TDC	3-bit $\Delta\Sigma$ TDC
立上がり時間差 T	-0.9 ~ 0.9[ns] (刻み : 0.04[ns])	-0.9 ~ 0.9[ns] (刻み : 0.04[ns])
遅延時間 τ	1[ns]	0.145[ns]
出力数(比較回数)	99点	99点

■ 立ち上がり間隔Tに対する1の出力数

測定時間を短縮した場合の検討

50

● シミュレーション条件

	1-bit $\Delta\Sigma$ TDC	3-bit $\Delta\Sigma$ TDC
立上がり時間差 T	-0.9 ~ 0.9[ns] (刻み : 0.04[ns])	-0.9 ~ 0.9[ns] (刻み : 0.04[ns])
遅延時間 τ	1[ns]	0.145[ns]
出力数(比較回数)	2点	2点

■ 立ち上がり間隔Tに対する1の出力数

マルチビット変調器の利点

✓マルチビット化することで短時間で細かく測定可能

■ 立ち上がり間隔Tに対する1の出力数

内部ADC/DACが1ビット

52

内部ADC/DACが多ビット

53

2値: 論理 Yes かNoか。 白か黒か。 誤差なし

多値: <mark>数値</mark> 灰色 誤差を含む

赤と黒

多少行き過ぎた行動をしても (ADCに誤差があっても) その結果を正しく戻せば対応できる。 (DACが正確ならば)

結果を正しく報告できなければ (DACが不正確なら)

システム全体の性能劣化

発表目次

(1)時間分解能回路の研究背景 (2)デルタシグマ型タイムデジタイザ回路

- デルタシグマ変調技術
- デルタシグマ型タイムデジタイザ回路の構成と動作
 アナログFPGA実現
- (3) <u>マルチビットデルタシグマ型タイムデジタイザ回路</u>
 - マルチビット変調器の問題点
 - DWAアルゴリズム
 - アナログFPGA実現
- (4) まとめ
- (5) 若手研究者・学生に贈る言葉

セグメント電流セル型DACの構成

セグメント電流セル型DAC 時刻1

セグメント電流セル型DAC 時刻2

セグメント・電流セル型DAC 時刻3 60

Data Weighted Averaging (DWA)アルゴリズム

セグメント型の 冗長性を利用

デジタル信号処理でDAC非線形性をノイズシェープ62

Data Weighted Averaging (DWA)アルゴリズム セグメント型の冗長性を利用

バトンレースの動作

DWAアルゴリズム使用 時刻1

DWAアルゴリズム使用 時刻2

DWAアルゴリズム使用 時刻3

DWAアルゴリズム使用 時刻4 66

マルチビット $\Delta\Sigma$ TDCの問題点

•遅延セルのミスマッチにより非線形性が発生

ΔΣΤDCでのDWAアルゴリズム

・遅延素子のばらつきによる非線形性 使用する遅延素子をシャッフル

DWAなし デジタル入力1 時刻1 69

DWAなし デジタル入力2 時刻2 70

DWAなし デジタル入力1 時刻3 71

DWAあり デジタル入力1 時刻1 72

DWAあり デジタル入力2 時刻2 73

DWAあり デジタル入力1 時刻3 74

 ・遅延ばらつき:ガウス分布でランダムに生成 最大でτ=0.145nsの±10%程度の誤差とした

● シミュレーション時に生成した遅延パラメータ

DWAの効果検証(MATLABシミュレーション) 76

•3-bit $\Delta\Sigma$ TDC (遅延時間: $\tau=0.145$ ns+ $\Delta\tau_N$)

DWA自体もΔΣ変調の構造

77

ΔΣTDCでのDWAアルゴリズム動作と効果 78

群馬大 小林Gr : ΔΣTDC にDWA使用の提案

・デジタル入力によりシフトする量を制御
 ・積分して微分を等価的に実現
 ▶ 遅延セルミスマッチが1次ノイズシェープ

DC成分のノイズが減少 すれば理想に近づく

発表目次

(1)時間分解能回路の研究背景 (2)デルタシグマ型タイムデジタイザ回路

- デルタシグマ変調技術
- デルタシグマ型タイムデジタイザ回路の構成と動作
 アナログFPGA実現
- (3) <u>マルチビットデルタシグマ型タイムデジタイザ回路</u>
 - マルチビット変調器の問題点
 - DWAアルゴリズム
 - アナログFPGA実現
- (4) まとめ
- (5) 若手研究者・学生に贈る言葉

マルチビットΔΣTDCのPSoC実装

設計したマルチビットΔΣTDC 回路

ブロック図

遅延 ては外付けのRC遅延で実現。 各遅延セルの抵抗Rは個別にスイッチで値が切り換え可能。 (意図的に遅延ばらつきを生成できる。)

3ビットFlash ADC

DWAロジック回路に入力 クロックの遅延選択回路の Select 信号へ

DWAロジック回路の動作

- ・温度計出力コードの信号をシフトし、クロック毎に選択する
 遅延素子をシフト
- 前のクロックでの1の数とシフト回数を保持・加算し現在の クロックでのシフト回数を決定

N個コンパレータΔΣ型TDC出力

DWAロジック回路出力

エンコーダ、遅延回路、加算器、バレルシフタにより構成

バレルシフタ (Barrel Shifter)

DWA論理回路のブロック図

入力信号を任意の数だけシフトする →右回転シフト回路

- 0 1 0 0 0 0 0 1回シフト
- 0 0 0 1 0 0 0 3回シフト

0 0 0 0 0 1 0 5回シフト

N回シフトで元の位置に戻る

ΔΣ TDC 測定結果1(DWA不使用) 86

ΔΣ TDC 測定結果1(DWA使用)

積分非直線性 INL

遅延素子由来のINLの減少を確認

ΔΣ TDC 測定結果2(DWA不使用) 89

ΔΣ TDC 測定結果2(DWA使用)

積分非直線性 INL

91

ΔΣ TDC 測定結果3 (DWA不使用) 92

ΔΣ TDC 測定結果3 (DWA使用)

積分非直線性 INL

回路性能のまとめ

	Flash TDC	1-bit ΔΣ TDC	マルチビットΔΣ TDC (without correction)	マルチビットΔΣ TDC (with correction)
回路量	×	Ô	0	0
時間分解能	×	Ô	Ô	Ô
精度	Δ	Ô	×	0
測定時間	Ô	×	0	0

発表目次

(1)時間分解能回路の研究背景 (2)デルタシグマ型タイムデジタイザ回路

- デルタシグマ変調技術
- デルタシグマ型タイムデジタイザ回路の構成と動作
- アナログFPGA実現
- (3) マルチビットデルタシグマ型タイムデジタイザ回路
 - マルチビット変調器の問題点
 - DWAアルゴリズム
 - アナログFPGA実現
- (4) <u>まとめ</u>

(5) 若手研究者・学生に贈る言葉

まとめ

2つのクロック間の立ち上がり時間差を高時間分解能で測定する デルタシグマ型タイムデジタイザ回路について

下記をご紹介しました。

- (1) デルタシグマ型タイムデジタイザ回路の構成と動作
- (2) 開発した高精度化のアルゴリズムと

そのMATLABシミュレーションによる効果確認

(3) 回路設計、アナログFPGA(PSoC)実現、測定評価結果

Kobayashi Laboratory

Time is GOLD !!

 $\Delta\Sigma TDC$ is a key.

謝 辞

この研究をご支援いただいています 半導体理工学研究センター(STARC)に 感謝いたします。

フラッシュ型TDCの最初の論文

[1] Y. Arai, T. Baba, "A CMOS Time to Digital Converter VLSI for High-Energy Physics", IEEE Symposium on VLSI Circuits (1988).

ΔΣ変調技術の発明者 安田靖彦先生の回顧・解説文

[2] 安田 靖彦「技術の生みの親・育ての親」郵政研究所月報 巻頭言 (2001年7月).

<u>ΔΣTDCの最初の論文</u>

[3] B. Young, K. Sunwoo A. Elshazly, P. K. Hanumolu, "A 2.4ps Resolution 2.1mW Second-order Noise-shaped Time-to-Digital Converter with 3.2ns Range in 1MHz Bandwidth," IEEE Custom Integrated Circuits, San Jose (Sept. 2010)

マルチビット $\Delta \Sigma$ TDCの線形性向上技術

[4] S. Uemori, M. Ishii, H.Kobayashi, et. al., "Multi-bit Sigma-Delta TDC Architecture with Improved Linearity," Journal of Electronic Testing : Theory and Applications, Springer, vol. 29, no. 6, pp.879-892 (Dec. 2013).

<u>ΔΣTDCの位相ノイズ測定法への提案</u>

[5] D. Hirabayashi, Y. Osawa, N. Harigai, H. Kobayashi et. al., "Phase Noise Measurement with Sigma-Delta TDC", IEEE International Test Conference, Poster Session, Anaheim, CA (Sept. 2013).

[6] 大澤 優介、平林 大樹、針谷 尚裕、小林 春夫、新津 葵一、小林 修「デルタシグマTDCを用いた位相ノイズ測定」 電気学会 電子回路研究会 島根 (2014年7月)

<u>マルチビット $\Delta\Sigma$ TDCのアナログFPGA実現</u>

[7] 中條剛志、平林大樹、荒船拓也、佐藤幸志、小林 春夫 「マルチビットデルタシグマ型タイムデジタイザ回路の FPGA実現・測定検証」 電気学会 電子回路研究会,秋田(2014年10月)

発表目次

(1) 時間分解能回路の研究背景 (2)デルタシグマ型タイムデジタイザ回路

- デルタシグマ変調技術
- デルタシグマ型タイムデジタイザ回路の構成と動作
- アナログFPGA実現
- (3) マルチビットデルタシグマ型タイムデジタイザ回路
 - マルチビット変調器の問題点
 - DWAアルゴリズム
 - アナログFPGA実現
- (4) まとめ

(5) <u>若手研究者・学生に贈る言葉</u>

工学研究の理念

「事業の目的は 顧客の創造である」 (ドラッカー) 「もの作り」だけではない。

イノベーション:

- 新しい技術もとに,
- 社会的意義のある新たな価値を創造し、

社会的に大きな変化をもたらす変革。

蒸気機関の発明: 馬車から鉄道へ

→ 社会が大きく変わる

103

研究でも 大河の流れも小さな湧水から 104

「大木を育てるには小さな種をまく必要がある。 小さなことから始めよ。 小さなことを大切にせよ。」 (リチャード W. ハミング、ベル研究所)

「着眼大局 着手小局」

知識は 発展している、作り出されている、 進歩している。 → 学生の研究を通じての教育 「大学は 学問をいまだに完全には 解決されていない問題として、 たえず研究されつつあるものとして 扱うことに特色がある。

106

「新しい学問分野を切り開くのが 一流の大学教授の証」

工学部 大学教員

製造業(第2次産業)の要素をもった サービス業(第3次産業)

教えと学び

「松下電器は人を作る会社です。 あわせて電気製品を作っています。」 (松下幸之助)

「情報化社会においては、 いかなる組織も学ぶ組織にならねばならない。 同時に教える組織にもならなければならない。」 (ドラッカー)

1()/

工学における考え方の研究

108

東大名誉教授 北森俊行先生

- 思考力・創造力の向上のために
- 数学の定理を教え、証明してみせるよりも、
 定理を発見する気持ちを教える。
- 物理法則を教えるよりも、
 - 物理法則を見つけ出そうという気持ちを教える。
- 出来上がった理論を教えるよりも、
 理論を創る気持ちを教える。

学問の心得、自戒

足代弘訓(江戸時代後期の国学者)

109

人をあざむくために学問をしない。 人とあらそうために学問をしない。 人をそしるために学問をしない。 人の邪魔をするために学問しない。 自分を自慢をするために学問をしない。 名を売るために学問をしない。 利をむさぼるために学問をしない。

宇都宮高校の生徒の時代にはじめて聴く。自分を戒める。
最後に

明治維新等の歴史を振り返っても 新しい時代を開くのは若者

「新しい葡萄酒は新しい皮袋に入れよ」(新約聖書)

「後生畏るべし、

焉んぞ来者の今に如かざるを知らんや。 四十五十にして聞こゆることなきは、 これ亦畏るるに足らざるのみなり。」(論語)