Introduction

Transient Response

Three disturbance sources

- Output reference signal
- Input voltage
- Load current

Fast dynamic current slew rate presents challenge in load transient response of power supplies

Research Objective

Proposed Control Scheme

- Based on voltage-mode control
 - Not require current sensor
 - Not require slope compensation
 - \(V_{IN} \) and \(V_{OUT} \) regulate the slope
 - Line feed-forward control
 - Wider closed-loop band
- Simple
 - Not require complicated calculation

Conventional Method

- Feed-back control
 - Voltage-Mode Control
 - Without line feed-forward control
 - Limited bandwidth
 - Current-Mode Control
 - Slope compensation
 - Current sensor
- Feed-forward control
 - Complicated non-linear calculation
 - Not cost effective

DC-DC Buck Converter with Slope Adjustable Triangular Wave Generator

System Configuration

Triangular Wave Generator Circuit

\[
V_{TRI} = G_3 C \cdot \frac{v_g}{1 - V_{CON} \cdot t} = M \cdot \frac{V_g}{1 - V_{CON,MAX} \cdot t}
\]

Duty Cycle Modulation

\[
\Delta d = \Delta d_1 + \Delta d_2 = \frac{V_e + G_3 \Delta v}{v_p} - \frac{1}{m} \frac{G_3 \Delta v}{v_{SS}}
\]

Stability Analysis

- Bandwidth increase
 - 50kHz → 109kHz
- Phase margin decrease
 - 40° → 10°

TWG needs phase compensation

Simulation Result

Line Transient Response

\(v_g : 5V \leftrightarrow BV \)

Load Transient Response

\(i_{out} : 100mA \leftrightarrow 420mA \)

Summary

Design a slope adjustable triangular wave for DC-DC buck converter

- Dynamic performance improvement
- Simple
 - Not require current sensor
 - Not require slope compensation
 - Not require complicated calculation

Reference

