Single-Inductor-Dual-Output DC-DC Buck converter Design with ZVS-PWM Control

Nobukazu Tsukiji, Yasunori Kobori, Nobukazu Takai, Haruo Kobayashi Division of Electronics and Informatics, Gunma University, Kiryu 376-8515 Japan email: tsukiji@el.gunma-u.ac.jp k_haruo@el.gunma-u.ac.jp

Introduction

Research Background(1)

 Power supply circuit is required for all electronic devices

Research Background(2)

· Background of electronics evolution

Research Background(3)

· Background of power supply performance requirements

Research Objective and Key-Technology

Research Objective

 Performance improvement of DC/DC converter power supply

SIMO:Single-Inductor Multi-Output for Downsizing

ZVS:Zero-Voltage-Switching for High Efficiency & Lower Noise

Simulation Result

SISO Buck Converter Circuit with ZVS-PWM Control

Changes from Conventional circuit

Parameter	Value
Vin	10V
Vo	6V
L	4.7uH
Cr	100nF
Co	470uF
lo	200mA

Basic ZVS-PWM operation in SISO buck converter

Summary

Summary

- We have described ZVS configuration and operation for SISO buck and boost converters.
- We have extended this ZVS method to SIDO converters, and shown only their simulation results in the steady and transient states.

Future Research

 We consider that ZVS improves efficiency of these converters, which we will investigate in theory, simulations and experiments.

SIDO Buck Converter Circuit with ZVS-PWM Control

Steady-State operation with ZVS-PWM in SIDO buck converter

Transient operation with ZVS-PWM in SIDO buck converter

