

Digital Calibration Algorithm for Current-Steering DAC Linearity Improvement

Shaiful Nizam Mohyar, Haruo Kobayashi

Division of Electronics & Informatics Faculty of Science and Technology, Gunma University, Japan November 5, 2014

- Introduction
- Problem Statement
- Proposed Techniques
 - Half-Unary Current-Steering DAC
 - Current Source Sorting
 - Circuit & Layout
- Simulation Result
- Conclusion

Introduction

- Problem Statement
- Proposed Techniques
 - Half-Unary Current-Steering DAC
 - Current Source Sorting
 - Circuit & Layout
- Simulation Result
- Conclusion

Introduction

- Background
 - Telecommunication devices
 - Mobile phones, wireless modems & avionics
 - High-speed, high-accuracy digital-to-analog converter (DAC)
- Problem

Objective & Investigated Method

Objective

High SFDR current-steering DAC for communication

Proposed method

- Current source mismatch effect reduction
 - **1** Half-unary DAC architecture
 - **②** Current source sorting algorithm

➔ Static linearity improvement

- Layout strategy
 - ① Clock-tree-like layout

of current sources & switches

➔ Dynamic linearity improvement

Introduction

- Problem Statement
- Proposed Techniques
 - Half-Unary Current-Steering DAC
 - Current Source Sorting
 - Circuit & Layout
- Simulation Result
- Conclusion

Current-Steering DAC

Binary versus Unary CS DAC

• Binary – Small silicon area 🙂 SW3 SW2 ์SW1 High speed ^(C) – Large glitch energy 🛞 l₃=41)I₂=2I I₁=I Unary / Thermometer-coded (TC) Small glitch energy ③ $V_{out} = 0$ R, – Redundancy ③ ຽw7 / ເຊັ້້ຽw6 / ເຊັ້້ຽw5 / ເຊັ້້ຽw4 / ເຊັ້ຽw3 / ເຊັ້້ຽw2 / ເຊັ້ຽw1 - Low speed \otimes $\left(\downarrow\right)\mathsf{I}_{6}=\mathsf{I}\left(\downarrow\right)\mathsf{I}_{5}=\mathsf{I}\left(\downarrow\right)\mathsf{I}_{4}=\mathsf{I}\left(\downarrow\right)\mathsf{I}_{3}=\mathsf{I}\left(\downarrow\right)$ Large silicon area 🛞) I₇=I l₂=l (l₁=l Segmented for balanced performance !!! ⁽²⁾

Current-steering DAC Limitation

- Transistor matching error
 - Amplitude errors current sources
 - Dominant at low input frequency
 - Timing errors (delay, duty cycle) switches
 - Dominant at high input frequency
 - → DAC static & dynamic non-linearity
- Better transistor matching
 - Large size → Power loss ⊗

Current Source Mismatch

- Introduction
- Problem Statement
- Proposed Techniques
 - Half-Unary Current-Steering DAC
 - Current Source Sorting
 - Circuit & Layout
- Simulation Result
- Conclusion

Why half-unary?

- Introduction
- Problem Statement
- Proposed Techniques
 - Half-Unary Current-Steering DAC
 - Current Source Sorting
 - Circuit & Layout
- Simulation Result
- Conclusion

Switching Sequence

3-Stages Current Sorting (3S-CS)

- Original
- 1st Stage Sorting

1st Stage Pairing → Virtual Unary

3-Stages Current Sorting (3S-CS)

2nd Stage Sorting

3rd Stage

Sorting

3rd Stage

Grouping

2nd Stage Grouping

Disassociating

New switching

sequence

- Introduction
- Problem Statement
- Proposed Techniques
 - Half-Unary Current-Steering DAC
 - Current Source Sorting
 - Circuit & Layout
- Simulation Result
- Conclusion

Previous Calibration Circuits

Current Measurement Circuit

Proposed Calibration Technique

No additional analog circuit (switches or routing).
 Only add digital circuit for switch control

Layout of Current Cells

— Isometric of interconnection to load resistor

→Minimum timing skew ©!!!

Floor Plan of Whole DAC

②Cascoded current source

③ Digital measurement circuit④ Isometric wiring

27

- Introduction
- Problem Statement
- Proposed Techniques
 - Half-Unary Current-Steering DAC
 - Current Source Sorting
 - Circuit & Layout
- Simulation Result
- Conclusion

Simulation condition

Resolution	12-bit
Input frequency	12.8 MHz
Sampling frequency	819.2 MS/s
Simulation iteration	100 times
Distribution type	Gaussian normal distribution, N(0,σ),(σ = 0.001 ~ 0.25 A)
Switching scheme	 Thermometer code (Unary) 2. 2-Stages CS(Unary) 3. 2-Stages CS (H-Unary) 4. 3-Stages CS (H-Unary) This work

INL & DNL Yields

Example: INL & DNL ($\sigma = 0.05$)

SFDR & Harmonic Distortions

Unarv + TC -60 Unary + 2S-CS **SFDR** performance Half-unary +2S-C Level (dB) 001 00 110 This work **↑21%** This work -120 Level (dB) 02 04 ▲ 28% -140 0.001 0.01 3rd order HD Unary + TC -60 Unary + TC Unary + 2S-CS Unary + 2S-CS Half-unary +2S-CS Level (dB) 001 002 Half-unary +2S-CS 50 0.001 0.01 0.1 Standard deviation, σ (A) -120

This work **1**24% -140 0.001 0.01 0.1 Standard deviation, σ (A)

2nd order HD

0.1

SFDR Performance ($\sigma = 0.05$)

- Introduction
- Problem Statement
- Proposed Techniques
 - Half-Unary Current-Steering DAC
 - Current Source Sorting
 - Circuit & Layout
- Simulation Result
- Conclusion

Conclusion

- High SFDR CS DAC for fine CMOS
- Static linearity improvement
 - **1** Half-unary DAC architecture
 - **②** 3-stage current sorting algorithm (calibration)
 - Performed MATLAB simulation

with different switching schemes

- Better INL & DNL yields ©
- Better SFDR, 2nd & 3rd HDs level ©
- Dynamic linearity improvement

 Well-balanced layout of current cells for interconnection R, C skew minimization.

Thank you very much for your kindly attention

We acknowledge STARC for kind support.

Question

Q1: How many cycles did you require in order to sort your proposed algorithm?

Q2: Let say the optimal number of cycles is six cycles, where one cycle is equal to 20ns, how can you claim the conversion rate of your DAC is 819.2 MS/s?

Q3: What is the range of your input voltage?

ISOCC2014

