高周波回路部における経年劣化の影響と特性劣化予報

神山 透* ビスワス・スミット・クマール 高井 伸和 小林 春夫 (群馬大学 大学院 工学研究科 電気電子工学専攻)

Forecast of Aging Impact on High-Frequency Circuit due to Performance Degradation

Toru Kamiyama^{*}, Biswas Sumit Kumar , Nobukazu Takai , Haruo Kobayashi , (Department of Electronic Engineering, Faculty of Engineering, Gunma University)

キーワード: 負バイアス温度不安定性, 電流・時間変換回路, CMOS アナログ回路, ヒステリシス特性 (Negative Bias Temperature Instability, Current to Time Converter circuit, CMOS analog circuit, Hysteresis Characteristic)

1. はじめに

半導体技術の革新が進み、MOSFET の微細化が年々続い ている。しかし、プロセスの革新に伴い、今までは考慮さ れていなかった新たな問題も発生している。その中でも特 に、経年劣化の信頼性の問題が深刻化している。これらの 問題を解決するための研究は、微細化の需要とともにこれ からさらに注目されていくと考えられている[1]。

微細化に伴う新たな問題への市場の要求として、事故や 安全に重大な関わりのあるセーフティクリティカルな要求 が近年増加の傾向にある。特に、ハイブリッド車や電気自 動車に使用される自動車用センサー回路はセーフティクリ ティカルな要求が高く高温等の過酷な環境下で動作する。 そのため、車載のセンサー部に使用されるような高周波回 路ブロックでの経年劣化の影響は高く、また需要も高い[2]。 従来は十分な設計マージンを持って製品を設計することで これらの問題に対処してきたが、微細化とともに電源電圧 が低下しているため十分な設計マージンの確保が非常に難 しくなっている。

本研究の目的は、セーフティクリティカルな要求を達成 するために経年劣化により回路に致命的な欠陥が生じる前 に事前に劣化を検出、さらには予報することである。本研 究は、微細化によるトランジスタの経年劣化とそれに伴う 回路特性の変化とその解決策について議論している。今回 は高周波回路ブロックにおける経年劣化の影響を調べる対 象回路として低雑音増幅器(LNA:Low Noise Amplifier) を選択している。LNAは、通信系の受信部の初段に置かれ、 所望信号の周波数だけを増幅して後段に渡す役目をもつ。 このため、LNAの不具合は全体に影響を及ぼすため非常に 重要である。一般的な製品で使われる LNA として、ノイ ズキャンセリング型 LNA の経年劣化の影響を解析してい る。提案手法は、経年劣化によるドレイン電流の劣化を時 間領域へと高い精度で変換する。これにより、経年劣化を 時間の変化として検出する。また、提案回路は設計マージ ンを考慮した調整が可能であり、広い範囲のアプリケーシ ョンへの応用が可能である。本稿において、評価されてい るシミュレーション結果は、TSMC130nmの CMOS プロセ スにより設計されている。

2. NBTI のメカニズムとトランジスタの特性劣化

〈2·1〉 NBTI の発生メカニズム

負バイアス温度不安定性(NBTI: Negative Bias Temperature Instability)は負ゲート電圧を印加し温度を 上げた状態で、Si-SiO2界面近傍に正電荷と界面準位が生成 する現象のことで、PMOSのしきい電圧 Vtの負方向への変 動を引き起こす[3]。NBTIは、近年の微細化に伴う新たな 信頼性課題の中で最も重要な故障モードの一つである。そ の主な理由として、非常に短時間の電圧印加で劣化が発生 することや、Vtの低下と電源電圧の低下によりVtの変動の 許容マージンが低下していることが挙げられる。また、 high-k メタルゲート等の新しい材料の使用や、近年の微細 デバイスではゲート酸化膜に印加される電界強度が 5~6MV/cm と高電界強度での使用であり劣化が加速される ことも大きな要因である[4]。

NBTI に関する研究が進むなかで、特有の現象があること も分かっている[5]。1つ目の現象は、デバイスが100°C以 上あるいは酸化領域を超える電界が0.6V/mよりも大きい 場合、NBTI による劣化現象はさらに起こりやすくなるこ とである。2つ目の現象は、リカバリー効果である。この リカバリー効果は、NBTI のストレスサイクルが終了してゲ ートからストレスが取り除かれると、劣化したしきい値が 徐々に回復する現象である。負バイアスと正バイアスを交 互に繰り返すことでリカバリー効果を効果的に生じさせ、 NBTI 劣化におけるデバイスの寿命が向上させることがで きると考えられる。

〈2·2〉 トランジスタの特性劣化

NBTI の劣化モデルは現在でも数多く研究されている。そ の中でも特に広く支持されている劣化モデルが R-D モデル (拡散-反応モデル) である。R-D モデルによる PMOS の しきい値変動 ΔV_t の劣化モデルは次の式で表される[3]。

式(1)で、A はテクノロジー依存係数、 γ は電圧加速係数、 kはボルツマン定数、T は絶対温度[K]、tは時間、nはべき 乗係数である。ワースト条件、つまり一番厳しい条件下で どの程度マージンがあるかを評価するために、式(1)に温度 や電圧等のワースト条件を代入して整理すると、以下のよ うに表せる[3]。

 $\Delta V_t = A \cdot t^n$ (2) さらに、しきい値変動の時間依存性をべき乗で近似すると 次式で表せる。A はテクノロジー係数のため、トランジス タの各モデルパラメータにより異なるため次式のように近 似する。

 $\Delta V_t \propto t^n$(3) 式(3)より、PMOS のしきい値変動の時間依存性の傾きは、 べき乗係数 n に依存していることが分かる。つまり NBTI における PMOS のしきい値の変動はストレス時間に依存し ている。このべき乗係数は近年の研究から、およそ 1/6 程 度であるということが明らかになっている[3]。図1は 時間 に対するしきい値の変化の近似を表している。これより、 ストレス電圧を印加してからの早い時間での劣化は大き く、ストレス時間が長くなるにつれて飽和現象が生じてい ることが確認できる。

式(3)より、NBTIにより PMOS のしきい値が時間の経過 とともに劣化すると、それに伴い、ドレイン電流が劣化す る。劣化したドレイン電流の式は次式のように表される。

$$I_D \approx \frac{\beta}{2} (V_{GS} - (V_T + \Delta V_T))^2$$

= $\frac{\beta}{2} (V_{GS} - (V_T + t^{\frac{1}{6}}))^2$(4)

ドレイン電流が式(4)のように劣化すると、PMOSの相互コンダクタンスも劣化する。この相互コンダクタンスにNBTI 劣化が生じると次式のように変化する。

$$g_m \approx \beta \{ V_{GS} - (V_T + \Delta V_T) \}$$
$$= \beta (V_{GS} - V_T) - \beta \cdot t^{\frac{1}{6}} \dots \dots \dots (5)$$

このように NBTI により PMOS の特性変動が生じること で、PMOS 単体だけではなく、回路全体の各特性変動をも 引き起こす。

図 1 PMOS の NBTI 劣化の時間推移 Fig.1. Time course of NBTI degradation of a PMOS.

3. 高周波回路部における経年劣化の影響

本研究では、一般的な製品で使われる LNA として、ノ イズキャンセリング型 LNA の経年劣化の影響を解析して いる。図 2 は、ノイズキャンセリング型 LNA の回路図を 示している[6] [7]。ノイズキャンセリング型 LNA について 説明する。この回路方式は、入出力間にある帰還抵抗で入 力整合を実現する。帰還抵抗を電圧利得で割った値が入力 インピーダンスとなるため、帰還抵抗の値を大きくでき、 雑音指数を改善できる回路方式である。ここで Vdd は電源電 圧、R は帰還抵抗、M4、Rx はカレントミラー、M6、M7、 M8 は DC バイアス電圧を供給している。ノイズキャンセ リング型 LNA の整合条件は

$$g_{m1} = g_{m3} = \frac{1}{R_S}$$
(6)

と表せ、整合がとれている場合に M1から発生する熱雑音を キャンセルできる。式(4)、式(5)より、NBTI 劣化が生じる と式(6)で表されている整合がとれなくなり M1から発生す る雑音をキャンセルが出来なくなる。それにより、M1から 発生する熱雑音が現れる。

以上の特性の劣化を確認するために、図2の回路におけ る経年劣化のシミュレーションを行う。シミュレーション 条件は表1に記されている。図3と図4には0年目と10年 目の利得と雑音指数のシミュレーション結果を示す。そし て、0年目から20年目までの劣化の時間推移を利得・雑音 指数共にグラフ化したものを図5と図6に記す。この結果 より、利得・雑音共に劣化していくことが確認できる。こ のように特性が劣化し続けると、回路に致命的な欠陥が生 じる。そのため致命的な欠陥が生じる前に劣化を検出・予 報する回路を提案する。

Table.1. Simulation conditions.	
SPICE モデルパラメータ	130nmCMOS
電源電圧 [V]	1.2
Aging Mode	NBTI
Aging Time [year]	0-20
Tomporaturo [°C]	97

Fig.3. Degradation of the gain of the noise canceling LNA.

Fig.6. Time course of degradation of the noise figure of the noise canceling LNA.

4. 経年劣化予報回路の提案

図7は、提案する経年劣化予報回路である。経年劣化の 影響を検出するにあたり、より精度を高く保つため提案回 路は Vpに対してヒステリシス特性を有している[8]。提案回 路は NBTI 劣化により変化するドレイン電流を時間の変化 に変換できる電流・時間変換回路部と、電流・時間変換回路の 制御信号 Vclkを利用して所望のタイミング信号を発生させ るタイミング制御部に分かれている。電流・時間変換回路の 部の動作について説明する。電流・時間変換回路部は M1~M7 とキャパシタ C、ヒステリシスインバータ inv1~inv3 で構成 される。

- まず *V_{clk}*が Low の場合、M₃と M₄は両方とも OFF の 状態である。このとき、*V_p*は *V_{DD}*に達していて、*T_{out}*は Low を出力している。
- 次に、短い単一パルス V_{clk} が、 M_4 のゲートに瞬間的に 印加されると、 M_4 だけでなく M_3 も ON になり、 V_p は Low になる。その結果、 I_d が Cに流れ込み、Cは I_d に 比例した電荷を蓄える。電流 I_d で Cを充電し始めると、 T_{out} は High になる。C は連続して充電され、 V_p は増 加する。C に充電している期間は、 T_{out} は High である。
- V_pが inv₁のスレッショルド電圧(V_{inv1})に達すると、 M₃と M₅はそれぞれ、OFFとONになる。そして、T_{out} が Low に切り替わり、Cの電荷が M₅を通して放電され、 放電を終えると回路が動作を終了する。

このとき、*Tout*は次式で与えられる。

$$T_{out} = \frac{C V_{inv1}}{I_d} \dots \tag{7}$$

次に、経年劣化の検出・予報動作について説明する。図8 には提案回路のタイミングチャートを記す。タイミングチ ャートは上から劣化前後の電流・時間変換回路の出力 Tout_Fresh と Tout_Aging、予報するタイミング信号 CLK、 エラー予報 Error_Fresh と Error_Aging を表している。劣 化を検出する対象の回路が経年劣化によりドレイン電流が 減少するとキャパシタ Cに流れ込む電流量が低下する。そ れに伴い、Vpの電位が inv1のしきい電圧に達するまでの時 間が増加する。結果として Tout は劣化前 Tout_Fresh のとき に比べて劣化後 Tout_Aging のように増加する。予報するタ イミング信号 CLK は Tout の監視を行っている。CLK がフ リップフロップに入力されると、劣化前では Tout_Fresh は マージンのタイミング以内であり Error_Fresh のようにエ ラーを出力しないが、Tout が劣化していくことで次第に設 定したマージンのタイミングに近づいていき、最終的に Tout Aging のようにこのマージンのタイミング値を超え る。マージンのタイミング値を超えるとフリップフロップ の出力として Error_Aging のようにエラー信号を出力す る。このようにフリップフロップのタイミングエラーを利 用することで、経年劣化の予報を行う。提案回路には、低 消費電力かつ占有チップ面積が小規模で、瞬間的な動作と リカバリー効果を利用した最小限の経年劣化であるといっ

た利点がある。

次に、提案回路のタイミング制御部について説明する。 タイミング制御部は OR 回路、NAND 回路、インバータ回 路、カウンター回路、ロジック回路から構成される。タイ ミング制御には電流・時間変換回路の制御信号 Velkを利用す る。Velkは劣化を任意のタイミングで監視する信号である。 図 9 には提案回路のタイミング制御部のタイミングチャー トを記す。図9は上から電流・時間変換回路の制御信号 Velk、 Vclk を繰り返した信号 Vloop、Vloop をカウントして所望のタ イミングで出力するタイミング信号 CLK を表している。 Velk に与える適切な遅延は設計マージンを考慮したもので あり、各回路・各部に応じた適切な遅延を与える必要があ る。予報のタイミングは、提案回路の制御信号 Velkを Vloop として繰り返させる。Vloop はカウンターによりカウントし、 ロジック部から所定の回数になったらフリップフロップの 制御信号 CLK として出力される。また、ロジック部から出 力される信号 CLK は Vloop を終了させる信号としても利用 される。これにより、フリップフロップの数やロジックで タイミングを自由に制御可能である。正確に劣化を検出・ 予報でき、広い範囲へ適用できる。

図 7 提案する経年劣化予報回路 Fig.7. Aging forecast circuit.

図8 提案回路のタイミングチャート

Fig.8. Timing chart of the proposed circuit.

Fig.9. Timing chart of the proposed circuit.

5. シミュレーションによる動作確認

図2のノイズキャンセリング型LNAに対して提案回路を 適用してシミュレーションを行い動作の確認を行った。シ ミュレーション条件は表1と同様である。LNAの劣化を監 視する際、温度や回路全体、入力整合部のように各部の劣 化を同時に監視することで信頼性をより高められる。各部 の劣化を検出した結果である Tout は予報に使用されるが、 Toutをカウンター回路などでデジタル化した後に、その結果 を基に自己修復を行うことでメインの回路の寿命を伸ばす ことも可能である。本稿では、M4の劣化を検出している。 図2中のM4はLNA 全体のバイアス電流を供給しているた め、劣化が生じると回路の特性にも大きく影響する。

図 10,11 は Aging Time を 0 年から 20 年まで劣化させて

いったときの利得と雑音指数の劣化に対して提案回路の劣 化の検出結果 *Tout* の変化を表したものである。図より、利 得と雑音指数共にそれぞれの劣化に対して *Tout* がほぼ線形 に変化している。この結果より、提案回路が対象の回路の 経年劣化の影響を検出・予報できている。

Fig.11. Degradation detection result of the proposed circuit (noise figure).

6. 結論

本論文において、先端 MOS プロセスの信頼性問題におけ るトランジスタの経年劣化、および回路特性の変化とその 解決策について議論している。今回は高周波回路ブロック における経年劣化の影響を調べる対象回路として低雑音増 幅器 (LNA: Low Noise Amplifier)を選択している。提案 手法はドレイン電流の劣化として現れる NBTI 劣化を、電 流・時間変換回路を用いて時間領域の変化に変換している。 提案回路は経年劣化を検出するためにヒステリシス特性を 有しているため高い精度の回路動作を保ちつつ、設計マー ジンを考慮したタイミング調整が可能であり、広い範囲の アプリケーションへの応用が可能である。結果については、 経年劣化の検出・予報を130nmCMOS プロセスにおいてシ ミュレーションにより確認している。結果より、提案回路 は経年劣化により回路に致命的な欠陥が生じる前に事前に それを検出、さらには予報することができる。

文 献

- Masayuki WATANABE, Makoto HOSHI, Hiroshi MIYAZAKI, Nobuto ONO, Koutaro HACHIYA, Atsushi KUROKAWA, Hirosaki University" フリップフロップの NBTI 信頼性性能解析"回路とシステムワークショッ プ論文集 Workshop on Circuits and Systems 25, 325-330, 2012-07-30
- [2] Hans G. Kerkhoff, Jinbo Wan and Yong Zhao, "Hierarchical Modelling of Automotive Sensor Front-Ends For Structural Diagnosis of Aging Faults," Mixed-Signals, Sensors and Systems TestWorkshop (IMS3TW), 2012 18th International, pp.91-96, (May 2012)
- [3] 塩野 登・横山 慎二・福田 保裕・三井 泰裕," LSI の信頼性"
- [4] 半導体技術委員会/半導体実装・製品技術専門委員会 "LSI の故障メカニズ ム及び試験方法に関する調査報告",電子情報技術産業協会技術レポート
- [5] Gielen, G.G.E.; Katholieke Univ. Leuven, Leuven, Belgium; Maricau,
 E.; De Wit, P."Designing Reliable Analog Circuits in an Unreliable World" Custom Integrated Circuits Conference (CICC), 2012 IEEE pp.1-4
- [6] 浅田邦博・松澤昭,"アナログ RF CMOS 集積回路設 [基礎編]", 培風 館
- [7] 浅田邦博・松澤昭,"アナログ RF CMOS 集積回路設 [応用編]", 培風 館
- [8] Toru Kamiyama, Nobukazu Takai, Haruo Kobayashi and Biswas Sumit Kumar " Current-to-Time Converter Circuit for High Precision System Containing HysteresisCharacteristics", 2013 International Conference on Analog VLSI Circuits, Montreal, Canada, (October 16-18, 2013)

謝辞

この研究は半導体理工学研究センター(STARC)に支援されています。