ETT-14-5, ETG-14-5

Transient Response Improvement of DC-DC Buck Converter With Adjustable Sawtooth Signal

<u>S. Wu</u>, Y. Kobori, M. R. Li, F. Zhao, Q. L. Zhu, L. Quan N. Takai, H. Kobayashi

Gunma University

- Research Objective
- Proposed Control Method
 - Capacitor Charge Balance
 - Proposed Adjustable Sawtooth Signal
- Simulation Results
 - SISO Buck Converter Simulation
 - SIDO Buck Converter Simulation
- Conclusion

- Research Objective
- Proposed Control Method
 - Capacitor Charge Balance
 - Proposed Adjustable Sawtooth Signal
- Simulation Results
 - SISO Buck Converter Simulation
 - SIDO Buck Converter Simulation
- Conclusion

Background

SIDO: Single Inductor Dual Output

Cross-Regulation

SIDO buck converter with feedback control

Essential problem: transient response

Conventional Method

- Feed-back control Control Delay
- Feed-forward + Feed-back control

Accurate control variables modulation are required

digital non-linear feed-forward control

Complicated for SIDO converter
Not cost-effective

Research Objective

• Principle

Modulate sawtooth signal based on charge balance of output capacitor

Advantage

- -Simple
- -Fast transient response
- -Cross-regulation improvement for SIDO buck converter

- Research Objective
- Proposed Control Method
 - Capacitor Charge Balance
 - Proposed Adjustable Sawtooth Signal
- Simulation Results
 - SISO Buck Converter Simulation
 - SIDO Buck Converter Simulation
- Conclusion

Charge Balance (1)

SISO buck converter

- Charge by input and inductor
- Discharge to output

System Block Diagram

Integrate the current of output capacitor (1)

Integrator Circuit

Integrate the current of output capacitor (2) Integrator Timing Chart

Control Variable Compensation (1) Multi-period Integrator

Control Variable Compensation (2)

 $V_{I nT}$ ---output of Multi-period integrator

 V_{con}' ---single period integration control variable ΔV ---constant compensation

Saw-tooth Generator

Sawtooth Generator

- Research Objective
- Proposed Control Method

- Capacitor Charge Balance

- Proposed Adjustable Sawtooth Signal
- Simulation Results
 - SISO Buck Converter Simulation
 - SIDO Buck Converter Simulation

Conclusion

Parameters and Phase Compensation

Converter Parameters

V _{in}	Input voltage	12V	
V _{out}	Output voltage	SISO	SIDO
		6V	6V, 4V
L	Inductor	20µH	
С	Output capacitor	500µF	
ESR	Equivalent Series Resistance	5mΩ	
f _{switch}	Switching frequency	500kHz	

Phase Compensation

Open-loop Bode Plot Bode Diagram 60 40 20 Magnitude (dB) **Open-loop** -20 LC filter -40 **Phase compensation** -60-89 Phase (deg) -45 Phase Margin $\approx 45^{\circ}$ -90 -135-180 10^{3} 10⁴ 10 10 Frequency (HZ) 20KHz18

SISO buck converter

 $I_o {:}\, 0.5A \rightarrow 1A$

Output under-shoot: Decrease 11mV→5mV **Response time:** Decrease 500µ s→8 µ s (1) load current (2) inductor current (FB) (3) inductor current FF (4) output voltage (FB) (5) output voltage

- (6) PWM signal
- (7) saw-tooth signal

- Research Objective
- Proposed Control Method
 - Capacitor Charge Balance
 - Proposed Adjustable Sawtooth Signal
- Simulation Results
 - SISO Buck Converter Simulation
 - SIDO Buck Converter Simulation
- Conclusion

Conclusion

Proposed new feed-forward controller
Simple:

Only output capacitor current is detected Digital nonlinear calculation not required

Applicable to SIDO converter Cost-effective

Available:

Transient response is Significantly improved

Cross-regulation of SIDO converter is improved

The End

Thanks for your attention

Q1

In page 20, how much are the self-regulation and cross-regulation with feed-forward control?

A1

Since the transient response is improved by proposed method, we nearly can't find selfregulation and cross-regulation in this simulation. There are a little different in output voltage when load is change. but it maybe is cross-regulation or maybe because of the voltage ripple is changed.

Q2

Why the ripple is changed?

A2

I think there are two possible reason. One is in this SIDO buck converter, every subconverter is exclusive. So when load is changed, the period distribution also changed, this will cause the output voltage ripple change. the other reason is the proposed control method is qualitative. We can't accurately modulate the sawtooth signal, it will cause oscillation in output. This also make the ripple become large. For the second reason, we should improve proposed controller, try to get more accurate regulation