Experimental Verification of a Timing Measurement Circuit With Self-Calibration

Kateshi Chujyo, Daiki Hirabayashi, Kentaroh Katoh

Conbing Li, Yutaroh Kobayashi, Koshi Sato

Haruo Kobayashi

Gunma University, Tsuruoka National College of Tech Hikari Science

Supported by STARC

Outline

- Research Background
- TDC Circuit and Problems
- Histogram Method Self-Calibration
- Analog FPGA Implementation
- Measurement Results
- Conclusions

Outline

<u>Research Background</u>

- TDC Circuit and Problems
- Histogram Method Self-Calibration
- Analog FPGA Implementation
- Measurement Results
- Conclusions

Research Background

A Time-to-Digital Converter (TDC) provides a digital output proportional to the time between two clock transitions.

The TDC is a key component in time-domain analog circuits,

(e.g. Sensor Interfaces, All-Digital PLLs, ADCs, ...)

Validate TDC linearity self-calibration with histogram method

All-digital implementation

Suitable for fine CMOS

Experimentally validate design with FPGA

Outline

- Research Background
- TDC Circuit and Problems
- Histogram Method Self-Calibration
- Analog FPGA Implementation
- Measurement Results
- Conclusions

Flash-type TDC

Delay Cell Variation Inside TDC Circuit

Random Variation among Delay Cells

Delay *τ* variation
Relative variation
TDC nonlinearity
Absolute (average value) variation
TDC input range & time resolution

• Focus on Relative variation here.

Outline

- Research Background
- TDC Circuit and Problems
- Histogram Method Self-Calibration
- Analog FPGA Implementation
- Measurement Results
- Conclusions

Research Objective (revisited)

• TDC linearity self-calibration with histogram

• Analog FPGA(PSoC) implementation, evaluation

TDC with Self-Calibration

Normal Operation Mode

Self-Calibration Mode

Self-Calibration

Self-calibration mode

START, STOP signals are NOT synchronized

Histogram data in all bins will be equal, after collection of a sufficiently large number of data, if the TDC has perfect linearity

Principle of TDC Linearity Calibration

• START (ring oscillator) and STOP signals are asynchronous.

- Probability of digital code for large delay is high.
- Probability of digital code for small delay is low.

Self-Calibration

Principle of Self-Calibration

Simulation Result of Self-Calibration

Sampling points 28,848,432

 $\tau_1 = 60 \sim 69 \, ps$ $\tau_2 = 10 ns$

Histogram for each bin is the same when the TDC is linear.

Outline

- Research Background
- TDC Circuit and Problems
- Histogram Method Self-Calibration
- Analog FPGA Implementation
- Measurement Results
- Conclusions

Implementation of TDC with Self-Calibration

Programmable System-on-Chip (PSoC) 5LP and external components

TDC Control Circuit in PSoC

START, STOP Generation for TDC Evaluation

TDC and Ring Oscillator Circuit

Encoder Circuit

Thermometer code to binary code

Data Processing Software

- C # program
- Data were transferred via USB to a PC and processed there.

Self Correction TDC (実行中) - Microsoft	Visual Studio Express 2012	for Windows Desktop (管理者)			クイック起動 (Ctrl+Q) 👂 – 🗗 🗙
ファイル(F) 編集(E) 寿= <u>へへ ポロマート</u>					
	- 0				
プロセス [4704] Generi	ez				
TXPET		-		Settings	「クスプローラー ▼ 早 ×
🖄 🔩 WindowsFormsApr	ON ON	OFF Start		USB: Disconnected	
-721-7-10N					
K					
	STOP側周波数	100 🗧 KHz	測定回数	10000 🗧 回	GenerateResource.write.1.tlog
					Generic HID UI.application
D1	D2 D3	D4 D5 D6	D7 D8 D9	D10 D11 D12	📑 Generic HID UI.csproj.FileListAbsolu
					Generic HID UI.exe
} I	D14 D15	D16 D17 D18	D19 D20 D21	D22 D23 D24	Generic HID UI.exe.manifest
					PSoC USB Data Transfer Application
😑 priva					ResGen.read.1.tlog
`s ² 7				Count	ResGen.write.1.tlog
s 1.6-					ResolveAssemblyReference.cache
s 1.2-					WindowsFormsApplication1 Generic
s 0.8-					WindowsFormsApplication1.Properti
s out					WindowsFormsApplication1.Touch_F
s 0.4 -					config
	5	10	15 20	25	11.cs
s	_				prm1.resx
S - JANE-NOFT	-	E00			elf_Correction_TDC
s		遅 <u>延</u> 差 500	ns ns		eric HID UI_TemporaryKey.pfx
s					ram.cs
100 %		山川道			CS T
エラー一覧 シンボル					
準備完了				1行	1列 1文字 挿入
🚱 🏉 📜 🔍 🕓	J 🕹 💽			€ ▲般 😢	📝 🔮 саръ 🛱 🔺 🚰 🍆 🏪 🕨 18:09 2014/01/13

Outline

- Research Background
- TDC Circuit and Problem
- Histogram Method Self-Calibration
- Analog FPGA Implementation
- Measurement Results
- Conclusions

Histogram in Calibration Mode

- Total number of data: 40934
- Average number of data for each bin: 1700

TDC Measurement Without Calibration

Actual Delay Data by Direct Measurement

Delay Cell

Correlation Between Histogram and Delay

TDC Characteristics Before and After Calibration

Time difference between two clock rising edges

INL Before and After Calibration (1)

INL Before and After Calibration (2)

Outline

- Research Background
- TDC Circuit and Problem
- Histogram Method Self-Calibration
- Analog FPGA Implementation
- Measurement Results
- <u>Conclusions</u>

Conclusion

- A TDC with self-calibration was implemented using an analog FPGA.
- Measurement results showed
 - Linearity improved by self-calibration.
- All-digital implementation is possible.
 - Suitable for fine CMOS

BOST for timing signal test

Altera FPGA (Full digital Implementation)

TDC with histogram method self-calibration

Delay cell array was implemented with a CMOS inverter chain.

		Inc. In the							
stance manaç	er: <u>ra</u> <u>P</u>		AG configuration	1	for a surre	[;			
tance	Status	LES: 2353	Memory: 331776	Small: 0/0	Medium: 41/66	Large: U/U			
Tak duto_si	g Not running	2000 Cers	331776 DKS	0 DIOUNS	41 00005	0 blocks			
loa: 2014/02	/15 16:11:16 #0						8r		
Type Alias	Hame	-256	-128 0	128 256	384	512 640 768	896		
out	phasedone						ППП		
B	TDC:TDC0(Q0+reg0								
R.	TDC:TDC0(Q1~reg0								
<u>B</u>	TDC: TDC0(Q2~reg0								
R.	TDC: TDC0(Q3~reg0								
R	TDC:TDC0[Q4~reg0								
R.	TDC:TDC0(Q5+reg0								
R	TDC: TDC0(Q6~reg0								
R	TDC:TDC0(Q7~reg0								
19						0			
🔊 Data 🛛	👼 Setup								
Hierarchy Display: ×		×	🔽 Data Log: 🙀						
🖻 🔽 🗢 TDCCNV3 altoll 2			🖻 🚼 auto_signaltap_0						

INL Before and After Self-Calibration

Measurement results

19th IEEE IMS3TW, Porto Alegre, Brazil

Sept. 17, 2014

Thank you for kind attention

Time continues indefinitely.

Kobayashi Laboratory

We are analog design & test researchers, but we appreciate digital technology.

19th Annual International Mixed-Signals, Sensors, and Systems Test Workshop

September 17-19, 2014 - Porto Alegre, Brazil