

AWGを用いた 低歪み高周波信号生成アルゴリズム

群馬大学 澁谷 将平* 小林 佑太朗 安部 文隆 小林 春夫

OUTLINE

- ・研究背景と研究目的
- ・AWGを用いた低歪み信号の発生
- ・位相差切り替え法の高周波信号生成
- ・理論解析
- ・まとめ

OUTLINE

- ・研究背景と研究目的
- ・AWGを用いた低歪み信号の発生
- ・位相差切り替え法の高周波信号生成
- ・理論解析
- ・まとめ

研究背景

ADC (SoC内キーコンポーネント) に着目して検討する

アナログデジタル変換回路(ADC)

AWGを用いたADC線形性テストシステム 6/32

AWGを用いた正弦波生成 ADC出力スペクトル 基本波 HD3 AWG ADC $= b_1 Y + \frac{b_3 Y^3}{2}$ テスト信号生成 ⊢req. fin $Y = a_1 D_{in} + a_3 D_{in}^3$ 3fin AWG HD3+ADC HD3 **AWG: Arbitrary Waveform Generator** 任意波形発生器 AWG内部の非線形性によるHD3 ADCの非線形性によるHD3

ADCテストで検出されるHD3 大 (over estimate)

ADC出荷試験での問題

出荷試験を通らない良製品が多 (Overkill)

テスト精度 低 🗪 良品排除 大

研究目的

安価なAWGでの 高精度テストを可能にするアルゴリズム開発

OUTLINE

・研究背景と研究目的

・AWGを用いた低歪み信号の発生

・位相差切り替え法の高周波信号生成

·理論解析

・まとめ

AWGを用いたHD3低減アルゴリズム

・ 位相差切り替えアルゴリズム
 位相差φの信号X₀, X₁を1クロックごとに切り替え

3次高調波 (3rd order Harmonic Distortion: HD3) キャンセル

- $X_0 = A \cos(2\pi f_{in} nT_s + \pi/6) ... n: 偶数$
- $X_1 = A \cos(2\pi f_{in} nT_s \pi/6) \dots n: 奇数$

10/32

 $\varphi = \pi/3$

AWGを用いた直接正弦波生成

位相差切り替え手法シミュレーション 12/32

位相差切り替え信号の問題点の解決法

OUTLINE

・研究背景と研究目的

・AWGを用いた低歪み信号の発生

・位相差切り替え法による高周波信号生成

・理論解析

・まとめ

位相差切り替え信号アルゴリズムの問題点 15/32

fs/2近傍イメージ信号の出現

周波数finの2つの信号

周波数3finの2つの信号

16/32

サンプリング周波数 fs で信号を切り替え

fs/2-fin の出現

fs/2-3fin の出現

高周波信号生成のための位相差設定 17/32

AWGを用いた高周波信号生成アルゴリズム 18/32

 $\varphi = 2\pi/3$

・ 位相差切り替えアルゴリズム
 位相差φの信号X₀, X₁を1クロックごとに切り替え

3次高調波 (3rd order Harmonic Distortion: HD3) キャンセル

- $X_0 = A \cos(2\pi f_{in} nT_s + \pi/3) ... n: 偶数$
- $\mathbf{X_1} = A \cos(2\pi f_{in} n T_s \pi/3) \dots n$: 奇数

AWGを用いた直接高周波正弦波生成

高周波信号アルゴリズムAWG出力

高周波信号アルゴリズムの問題点

AWGでの低歪み高周波信号発生

AWGでの低歪み高周波信号発生

OUTLINE

- ・研究背景と研究目的
- ・AWGを用いた低歪み信号の発生
- ・位相差切り替え法の高周波信号生成
- ・理論解析
- ・まとめ

位相差切り替え手法の理論解析モデル式 25/32

* 位相差切り替え信号(DAC入力信号)

 $D_{in}(n) = \begin{cases} X_0(n) = A \sin(2\pi f_{in} nT_s + \pi/3) & n: even \\ X_1(n) = A \sin(2\pi f_{in} nT_s - \pi/3) & n: odd \end{cases}$

*AWG出力信号=テスト信号

 $Y(nT_s) = \begin{cases} a_1 X_0(n) + a_3 \{X_0(n)\}^3 & n: even \\ a_1 X_1(n) + a_3 \{X_1(n)\}^3 & n: odd \end{cases}$

* ADC出力信号

 $Z(nT_s) = b_1 Y(nT_s) + b_3 \{Y(nT_s)\}^3$

$$f_s(AWG) = f_s(ADC)$$

AWG出力理論式でのHPF効果の考慮

ADC出力でのfs/2-3finキャンセル理由の考察 27/32

HPFによる ADC HD3出現理由

三次高調波成分

$$\frac{1}{4}b_{3}R^{3}\cos\left(2\pi\cdot 3\cdot (\frac{f_{s}}{2}-f_{in})nT_{s}\right)$$

三次高調波の折り返し

$$-\frac{3}{2}\alpha\beta b_{3}PQR\cos\left(2\pi\left(\frac{f_{s}}{2}+3f_{in}\right)nT_{s}\right)$$

$$\left(-\frac{3}{4}\alpha^{2}b_{3}P^{2}R+\frac{3}{2}\alpha\beta b_{3}PQR\right)\cos\left(2\pi\left(\frac{f_{s}}{2}-3f_{in}\right)nT_{s}\right)$$

足し合わせると $-b_{3} \left\{ \frac{3\sqrt{3}}{32} \left(a_{1}A + \frac{3}{4}a_{3}A^{3} \right)^{3} \right\} \underbrace{(1 - \alpha^{2})}_{\left(a \neq 1 \rightarrow 0 \right)}$ $\begin{bmatrix} \alpha = 1 \rightarrow 0 : + \pi \nu \nu \nu \nu \\ \alpha \neq 1 \rightarrow HD3$ 検出可

高周波生成法におけるADCのHD3検出誤差 29/32

OUTLINE

- ・研究背景と研究目的
- ・AWGを用いた低歪み信号の発生
- ・位相差切り替え法の高周波信号生成
- ・理論解析
- ・まとめ

まとめ

AWG で、プログラム変更+簡単なフィルタのみで 低歪正弦波生成法の提案

- 高周波信号生成アルゴリズム
- ▶ 位相差切り替え手法に対して高周波での利用アルゴ リズムを提案
- ▶ 理論解析

→位相差切り替えの問題点の原因解明 →フィルタによる測定誤差改善

今後の方針

- ・3次以外の高調波歪みの低減
 > HD2低減
 > HD2とHD3の同時低減
- 高周波信号生成のための
 位相差切り替え手法の利用検討
 - ➤ AWG出力確認
 - ➤ HPF仕様検討

アルゴリズムによる ADCテストの大きな進歩

Appendix

「位相差切り替え+LPF」によるADC HD3テストシステム 34/32

LPFによるスプリアス低減

AWG出力波形の測定結果

直接正弦波生成法

$$D_{in}(n) = A \sin(2 \pi f_{in} n T_s)$$

位相差切り替え手法

$$D_{in}(n) = \begin{cases} 1.15A\sin(2\pi f_{in}nT_s + \pi/6) & n: 偶数 \\ 1.15A\sin(2\pi f_{in}nT_s - \pi/6) & n: 奇数 \end{cases}$$

AWG出力信号測定結果 HD3低減確認 ^{36/32}

開発したLPF特性の測定結果

ADC出力信号 HD3低減確認

ADC出力HD3測定結果誤差低減確認

質疑応答

Q.P29で測定誤差を1.7%に低減とあったが、従来と比べると何%程度改善される? A.大体4~5%

Q.導入でテストコスト削減が重要とあったが産業界からは どの程度要望があるのか

A.厳密な要望がどの程度かは調査中。ただ設計、製造に おけるコスト削減には限界があるだろうから需要は多いだ ろうと考える。