VCOにおける位相雑音信頼性 シミュレーションについての研究

○ 轟俊一郎

安部文隆 KhatamiRamin 新井 薫子 香積 正基 戸塚拓也 東野将史 築地伸和 青木均 小林 春夫(群馬大学)

> 群馬大学 エ学部 電気電子エ学科 情報通信システム第2研究室

> > Gunma University Kobayasi Lab 1

アウトライン

- 研究目的及び背景
- ・ 雑音(ノイズ)の種類及び発生原因
- TEG作成
- ノイズの測定及びモデルパラメータの抽出
- 位相雑音シミュレーション
- まとめ

アウトライン

- 研究目的及び背景
- ・ 雑音(ノイズ)の種類及び発生原因
- TEG作成
- ・ノイズの測定及びモデルパラメータの抽出
- 位相雑音シミュレーション
- まとめ

研究の目的

- RFアナログ回路・・・様々なアプリケーションで使用 発振回路を用いた集積回路は根幹回路モジュール
- 発振回路における重要な電気特性・・・位相雑音
 位相雑音が劣化 製品の耐久性・寿命に影響
- ●特にノイズ特性は様々な要因によりばらつきを持つため、
 統計モデルを用いてモデリング

実際の回路での特性ばらつきを持った ノイズ劣化特性の予想を可能に!

研究背景

半導体プロセスの微細化に伴い、

メリット

- 朱積回路の小型化
- ➢ 高速化
- ▶ 低消費電力
- デジタル回路に恩恵

デメリット

- ▶ 製造時の特性ばらつき
- ▶ 電源電圧低下による、
 - ダイナミックレンジの低下
- ▶ 回路の比精度の劣化
- ▶ ノイズの増大

アナログ回路設計を困難

研究背景(ノイズ)

アナログ回路設計者 製造ばらつき → 回路仕様に対して過剰にマージン 特に日本は過剰にマージン → 海外との競争力の低下

その他にも 経年劣化による回路性能の劣化 半導体出荷テスト時のテスト精度の不完全性

デバイスに生じるノイズを考慮することができれば アナログ回路設計が容易に!

研究フロー

アウトライン

- 研究目的及び背景
- ・ 雑音(ノイズ)の種類及び発生原因

• TEG作成

- ・ノイズの測定及びモデルパラメータの抽出
- 位相雑音シミュレーション
- まとめ

• 熱雑音

抵抗等で電流が流れていなくても、電子の不規則な熱振動により発生 電子の熱運動に起因

ノイズの大きさ 🛑 主に温度で決まる

• 1/fノイズ

特にMOSFETで大きい

低周波数で支配的(ノイズパワーが周波数に逆比例)

<u>発振回路での位相ノイズ特性</u>の劣化

• RTS(Random Telegraph Signai)ノイズ

ゲート酸化膜の界面準位による電子のランダムな捕獲と放出が原因

他にもpn接合で起きるショットノイズ等

主な発生原因

移動度の変動

エネルギー準位の変動 🔿 トラップされる電子の数が変動

電子の変動による電位の変動が起きる

位相ノイズ

位相ノイズとは、発振周波数の短期的揺らぎ

アウトライン

- 研究目的及び背景
- ・ 雑音(ノイズ)の種類及び発生原因
- TEG作成
- ・ノイズの測定及びモデルパラメータの抽出
- 位相雑音シミュレーション
- まとめ

TEG作成

- 90nmプロセスn-MOSFET 劣化前の直流・ノイズ測定 のためにTEGを作成
- 一つのチップに作成すること
 により製造ばらつきによるノイズ特性の違いを考慮

TEGの構成図

MOSFETは、1/fノイズ、DC測定用に、GSGプローブ用ブロックを中心に作成

TEGPADの構成

TEGサイズ

							L	[um]						
		0.10	0.14	0.20	0.30	0.40	0.50	0.60	0.80	1.00	3.00	5.00	10.00	20.00
	20.0													四端子
	10.0	GSG	GSG		GSG		GSG		四端子	GSG	四端子	GSG	GSG	
wumj	5.0	GSG		四端子	四端子									
	0.5	四端子											GSG	
	0.2	GSG											GSG	

アウトライン

- 研究背景
- ・ 雑音(ノイズ)の種類及び発生原因
- TEG作成
- ノイズの測定及びモデルパラメータの抽出
- 位相雑音シミュレーション
- まとめ

測定環境

ハイソル株式会社マニュアルプローバーHMP-1000A-GU、Agilent Semiconductor Parameter Analyzerを用いて測定

1/fノイズばらつき測定結果

(VGS = 1.41 V, VDS = 1.0 V, L = 90nm, W = 10µm)

1/fノイズばらつき測定結果

 $(VGS = 0.6V, VDS = 1.0 V, L = 90nm, W = 10\mu m)$

抽出したモデルパラメータ

. MODEL bsim4 NMOS	+ DVT0W = -0.0016858	+ AIGBINV = 3.500E-01
+ LEVEL = 9	+ DVT1W = 145867.098	+ BIGBINV = 3. 000E-02
+ BINUNIT = 1.000E+00	+ DVT2W = -0.46535	+ CIGBINV = 6.000E-03
+ MOBMOD = 2. 000E+00	+ UA = 1.3558e-15	+ EIGBINV = 1. 100E+00
+ EPSROX = 3. 900E+00	+ UB = 8.371e-20	+ NIGBINV = 3. 000E+00
+ FNOIMOD = 0.000E+00	+ UC = -9.9563e-19	+ AIGC = 5.400 E - 02
+ TNOIMOD = 0.000E+00	+ EU = 1.6855	+ BIGC = 5. 400E-02
+ DIOMOD = 1.000E+00	+ VSAT = 286843.3158	+ CIGC = 7. 500E-02
+ PERMOD = 1.000E+00	+ A0 = 4.9093	+ NIGC = 1.000E+00
+ TOXE = 2.500e-9	+ AGS = 1.1921	+ AIGSD = 4.300E-01
+ TOXP = 2.500e-9	+ KETA = 0. 045909	+ BIGSD = 5.400E-02
+ TOXM = 2.500e-9	+ A1 = 0.000E+00	+ CIGSD = 7. 500E-02
+ TOXREF = 2.850e-9	+ A2 = 1.000E+00	+ EM = 859.0
+ DTOX = 0.000 E+00	+ DELTA = 0.029728	+ AF = 0.3
+ XJ = 1. 250E–07	+ VTL = 2. 050E+05	+ EF = 1.3
+ NDEP = 3. 100E+18	+ RDSW = 65. 3708	+ ALPH = 4.0E-4
+ NGATE = 1.000E+20	+ RDW = 1.000E+02	$+ \text{ KFN} = 2.0 \text{E}{-3}$
+ NSD = 5. 100E $+020$	+ RSW = 1.000E+02	+ WL = -7. 3447e-16
+ RSH = 0.000E+00	+ CDSC = 2.400E-04	+ WLN = 1.000E+00
+ RSHG = 1.000E-01	+ ETA0 = -141.7894	. SUBCKT noise 1 1 2 3 4 $$
+ TNOM = 25	+ETAB= 1.03074647941e+13	CFO1 1 0 1E-005
+ LINT = -3. 1692e-08	+ DSUB = 5. 600E-01	RFO 1 11 100
+ WINT = 2. 9978e-08	+ PCLM = 1.3969	CFO2 11 0 0.001
+ VTH0 = 0. 25155	+ PDIBLC1 = 0.0102	RLOAD 11 12 100
+ VFB = $-1.000E+00$	+ PDIBLC2 = 1.4882e-05	COUT 12 3 1E-005
+ PHIN = 0.000E+00	+ PDIBLCB = 0.000E+00	ROUT 3 0 1E+006
+ VOFF = -0.053757	+ DROUT = 5. 600E-01	RSOURCE 13 10 50
+ NFACTOR = 0.69662	+ PSCBE1 = 239141665. 679	CFI2 10 0 0.001
+ U0 = 0.064594	+ PSCBE2 = 1.6177e-05	RFI 10 2 100
+ K1 = 0.52714	+ PVAG = 0.000E+00	CFI1 2 0 1E-005
+ K2 = -0.055059	+ ALPHA0 = 5.6466e-10	CDUM 2 4 100
+ K3 = -168.2349	+ ALPHA1 = -0.0028911	CIO 12 13 1E-015
+ K3B = 90. 2483	+ BETA0 = 4.95	M1 21 22 23 0
+ W0 = 4. 7667e-06	$+ \text{AGIDL} = 0.000 \pm 00$	+ bsim4
+ LPE0 = 1.740E-07	+ BGIDL = 2. 300E+09	+ L = 9E-008
+ LPEB = 0.000E+00	+ CGIDL = 5.000E-01	+ W = 10E-006
+ VBM $= -3.000E+00$	+ EGIDL = 8.000E-01	RD 12 21 0.01
+ DVT0 = 0. 11122	+ AIGBACC = 4. 300E-01	RG 13 22 0.01
+ DVT1 = 0.06234	+ BIGBACC = 5. 400E-02	RS 0 23 0.01
+ DVT2 = -0.00030983	+ CIGBACC = 7.500E-02	

<mark>赤文字</mark> 開発した1/fノイズモデルの パラメータ

1/fノイズ測定結果

V_{GS}が大きい(a)のに比べ(b)の方が一桁以上1/fノイズのばらつきの幅が大きい ことが分かる。

劣化後のモデルパラメータ

. MODEL bsim4 NMOS	+ DVT0W = -0.0016858	+ AIGBINV = 3.500E-01
+ LEVEL = 9	+ DVT1W = 145867.098	+ BIGBINV = 3. 000E-02
+ BINUNIT = 1.000E+00	+ DVT2W = -0.46535	+ CIGBINV = 6.000E-03
+ MOBMOD = 2. 000E+00	+ UA = 1. 3558e-15	+ EIGBINV = 1. 100E+00
+ EPSROX = 3. 900E+00	+ UB = 8. 371e-20	+ NIGBINV = 3. 000E+00
+ FNOIMOD = 0. 000E+00	+ UC = -9. 9563e-19	+ AIGC = 5.400 E - 02
+ TNOIMOD = 0. 000E+00	+ EU = 1.6855	+ BIGC = 5. 400E-02
+ DIOMOD = 1.000E+00	+ VSAT = 286843. 3158	+ CIGC = 7.500E-02
+ PERMOD = 1. 000E+00	+ A0 = 4.9093	+ NIGC = 1.000E+00
$+ \text{ TOXE} = 2.500 \text{e}{-9}$	+ AGS = 1.1921	+ AIGSD = 4.300E-01
+ TOXP = 2. 500e-9	+ KETA = 0. 045909	+ BIGSD = 5. 400E-02
$+ \text{ TOXM} = 2.500 \text{e}{-9}$	+ A1 = 0.000E+00	+ CIGSD = 7.500E-02
+ TOXREF = 2. 850e-9	+ A2 = 1.000E+00	+ EM = 859.0
+ DTOX = 0.000 E+00	+ DELTA = 0. 029728	+ AF = 0.3
+ XJ = 1.250E-07	+ VTL = 2. 050E+05	+ EF = 1.3
+ NDEP = 3. 100E+18	+ RDSW = 65. 3708	+ ALPH = 4.5E-4
+ NGATE = 1.000E+20	+ RDW = 1.000E+02	$+ \text{ KFN} = 3.4 \text{E}{-3}$
+ NSD = 5. 100E+020	$+ \text{RSW} = 1.000 \pm 02$	+ WL = -7. 3447e-16
+ RSH = 0.000E+00	+ CDSC = 2.400E-04	+ WLN = 1.000E+00
+ RSHG = 1.000E-01	+ ETA0 = -141.7894	. SUBCKT noise1 1 2 3 4
+ TNOM = 25	+ ETAB =	CFO1 1 0 1E-005
+ LINT = -3.1692e-08	1. 03074647941e+13	RFO 1 11 100
+ WINT = 2. 9978e-08	+ DSUB = 5. 600E-01	CFO2 11 0 0.001
+ VTH0 = 1.01155	+ PCLM = 1.3969	RLOAD 11 12 100
+ VFB = $-1.000E+00$	+ PDIBLC1 = 0.0102	COUT 12 3 1E-005
+ PHIN = 0.000E+00	+ PDIBLC2 = 1.4882e-05	ROUT 3 0 1E+006
+ VOFF = -0.053757	+ PDIBLCB = 0.000E+00	RSOURCE 13 10 50
+ NFACTOR = 0. 69662	+ DROUT = 5. 600E-01	CFI2 10 0 0.001
+ U0 = 0. 064594	+ PSCBE1 = 239141665. 679	RFI 10 2 100
+ K1 = 0.52714	+ PSCBE2 = 1.6177e-05	CFI1 2 0 1E-005
+ K2 = -0.055059	+ PVAG = 0.000E+00	CDUM 2 4 100
+ K3 = -168.2349	+ ALPHA0 = 5.6466e-10	CIO 12 13 1E-015
+ K3B = 90. 2483	+ ALPHA1 = -0.0028911	M1 21 22 23 0
+ W0 = 4. 7667e-06	+ BETA0 = 4.95	+ bsim4
+ LPE0 = 1.740E-07	$+ \text{AGIDL} = 0.000 \pm 00$	+ L = 9E-008
$\perp \mathbf{I} \mathbf{D} \mathbf{E} \mathbf{D} = 0 \mathbf{C} \mathbf{C} \mathbf{O} \mathbf{E} \mathbf{D} \mathbf{O}$		$\pm W = 10 E_{-00}c$
+ LPEB = 0.000E+00	+ BGIDL = 2. 300E+09	+ W = 10E-008
+ LPEB = 0.000E+00 + VBM = -3.000E+00	+ BGIDL = 2. 300E+09 + CGIDL = 5. 000E-01	+ W = 10E-008 RD 12 21 0.01
+ LPEB = $0.000E+00$ + VBM = $-3.000E+00$ + DVT0 = 0.11122	+ BGIDL = 2.300E+09 + CGIDL = 5.000E-01 + EGIDL = 8.000E-01	RD 12 21 0.01 RG 13 22 0.01
+ DYEB = 0.000E+00 $+ VBM = -3.000E+00$ $+ DVT0 = 0.11122$ $+ DVT1 = 0.06234$	+ BGIDL = 2. 300E+09 + CGIDL = 5. 000E-01 + EGIDL = 8. 000E-01 + AIGBACC = 4. 300E-01	RD 12 21 0.01 RG 13 22 0.01 RS 0 23 0.01

<mark>赤文字</mark> 劣化後のパラメータ

劣化前後の1/fノイズ特性

65 nm のデバイスの実験によるパラメータ値を入力

劣化後(室温300.15K、1000時間後)

ドレイン出力1/fノイズ電圧密度特性

アウトライン

- 研究目的及び背景
- ・ 雑音(ノイズ)の種類及び発生原因
- TEG作成
- ・ノイズの測定及びモデルパラメータの抽出
- 位相雑音シミュレーション

VCO回路設計

Cadence社のSPECTREシミュレーターを用いて位相雑音をシミュレーション

- 測定結果を用いるため 一 n-MOSFETのみのVCO回路構成
- n-MOSFET・・・キャリアが電子 → 移動度が高い
 ドレイン端が高電界になった時・・・チャネル外に電子が飛び出し易い
- ▶ p-MOSFETに比べノイズが一桁以上大きい
- > 回路動作にも大きく影響

位相雑音及び発振波形

解析方法は以下の方法を用いた。

- 1. Transient analysis(tran): 過渡解析
- 2. Periodic steady state analysis (pss):周期回路の定常状態の1周期タ イムドメインベースで計算
- 3. Periodic noise analysis (pnoise) :pssの結果をベースにしたノイズ解析

発振していることを確認した。

位相雑音の劣化

位相雑音が劣化して大きくなっている

VCO回路構成

回路構成による位相雑音

(a)、(b)よりバイアス電流源は発振に関係ない (c)バイアス源から抵抗を通った電流により熱雑音が発生する

アウトライン

- 研究目的及び背景
- ・ 雑音(ノイズ)の種類及び発生原因
- TEG作成
- ・ノイズの測定及びモデルパラメータの抽出
- 位相雑音シミュレーション
- まとめ

まとめ

- TEGを作成し、ノイズの測定を行った
 モデルパラメータの抽出
- 抽出したモデルパラメータをもとにデバイスの経年劣化時の特 性を求めた
- 位相雑音の劣化が確認できた
- 回路トポロジーの違いによる位相雑音の比較を行った

実際の回路での特性ばらつきを持ったノイズ 劣化特性の予想が可能に!

• 里周二(宇都宮大)

Q:1/fノイズはf=0の時どうなるか?(P11) A:大きくなるのですが、発散するわけではなく、ある大きさになると思います。

清水(宇都宮大学)
 Q:なにが原因で劣化が起きるのか?(P6)
 A:経年変化による劣化を考えております。