電気学会研究会 電子デバイス/半導体電力変換合同研究会 2015年10月29日

高信頼性Nch-LDMOSの提案

○松田順一、神山雅貴、築地伸和、小林春夫 群馬大学

- ・はじめに
 - 高信頼性LDMOSの必要性と考え方
- ・従来型と高信頼性(新)型LDMOSの構造
- シミュレーション結果
 - ・従来型と新型で電気特性比較(I_{DS}-V_{GS}, I_{DS}-V_{DS}, RonA, BV_{DS})
- シミュレーションによる解析
 - 真性MOSFETのドレイン電圧(V_{DS.int})とLDMOSのドレイン電圧(V_{DS})の関係
 - 横(x)方向の最大電子速度のV_{DS} 依存性(at V_{GS}=3V and 5V)
 - 正孔電流密度と電界の形状の解析(at V_{GS}=3V and 5V)
 - •ドレインpn接合破壊の解析
- まとめ

高信頼性LDMOSの必要性と考え方

- •高信頼性LDMOSの必要性
 - 信頼性:民生用LDMOS<車載用LDMOS
 - 車載用では民生用よりホットキャリア耐性とESD耐性を強化
- 高信頼性LDMOSの考え方
 - ホットキャリア耐性の強化
 - 真性MOSFETのドレイン近傍でのインパクト・イオン化の抑制
 - Kirk効果によるドレイン電流増大(Drain Current Expansion)の抑制
 - ESD 耐性の強化(LDMOSをESD素子として兼用する場合)
 - バルク・ブレークダウンの発生(pn junction breakdown location is in the bulk.)
- シミュレーションによる検討⁽¹⁾
 - 30~50V用Nch-LDMOSで高信頼性構造を検討

(1) アドバンスソフト社の3次元TCADの中のAdvance/DESSERT(6版)を2次元で使用

従来型と新型Nch-LDMOSの構造

- (1) 高ドープp-body ⇒ ドリフト端周りでのRESURFと電流増大の抑制
- (2) p-well ⇒ ドリフト領域に沿ったRESURFと適度な BVds
- (3) V_T adjustment⇒ V_T 調整と電流増大の抑制
- (4) n-drift 2 ⇒ 低 RonA と電流増大の抑制

- (5) p-buried layer 1 ⇒ドリフト端周りでのRESURFと電流増大の抑制の強化
- (6) p-buried layer 2 ⇒ ドリフト領域に沿ったRESURFの強化
- (7) ドレインn⁺下のp-buried layer 2の開口
 - ⇒ 電流増大の抑制と適度なBVdsの維持

シミュレーションによるNch-LDMOSの構造

従来型と新型LDMOSのI_{DS}-V_{GS}特性の比較

DIBL(Drain Induced Barrier Lowering): 従来型LDMOS>新型LDMOS

従来型と新型LDMOSのI_{DS}-V_{DS}特性の比較

従来型LDMOSで Current Expansion 発生、新型LDMOSではその発生は無し

従来型と新型LDMOSのR_{on}A and BV_{DS}の比較

真性MOSFET のドレイン電圧(V_{DS,int}) vs. LDMOSのドレイン電圧(V_{DS})

Conventional LDMOS

New LDMOS

V_{DS.int}:ドレイン側ゲート端表面での電子の擬フェルミ電位で定義

(1) V_{GS}=3, 4V と V_{GS}=5, 6V で異なる特性

(2) V_{DS.int}の飽和特性がDIBLに影響

従来型と新型LDMOSの表面に沿ったx方向の最大電子速度の比較 at V_{GS}=3 and 5V

 I_{DS} - V_{DS} の飽和特性(V_{GS} =3V)⇒従来型も新型もチャネル領域の飽和特性に依存($V_{DS,int}$ が高いことに対応) I_{DS} - V_{DS} の飽和特性(V_{GS} =5V)⇒従来型も新型もドリフト領域の飽和特性に依存($V_{DS,int}$ が低いことに対応) (従来型のA領域: current expansion 後の飽和特性に寄与⇒真性MOSFETのインパクトイオン化増加)

従来型と新型LDMOSの正孔電流密度と電界形状の比較 at V_{GS}=5V

正孔電流密度形状

ドリフト両端近傍での正孔電流密度: 従来型LDMOS>新型LDMOS

ドリフト両端近傍での電界: 従来型LDMOS>新型LDMOS (p-埋め込み層1と2の効果)

従来型と新型LDMOSの正孔電流密度形状の深さ(y)依存性の比較 at V_{DS}=40V and V_{GS}=5V

従来型LDMOS

新型LDMOS

チャネル側ドリフト端近傍でのy=0nmにおける正孔電流密度(矢印箇所) ⇒ 新型/従来型LDMOS=1/16

従来型と新型LDMOSの正孔電流密度と電界形状の比較 at V_{GS}=3V

13

従来型と新型LDMOSの正孔電流密度形状の深さ(y)依存性の比較 at V_{DS}=40V and V_{GS}=3V

Conventional LDMOS

New LDMOS

チャネル側ドリフト端近傍でのy=0nmにおける正孔電流密度(矢印箇所) ⇒ 新型/従来型LDMOS=1/19

従来型と新型LDMOSのブレークダウン時の正孔電流密度分布の比較

従来型LDMOS

新型LDMOS

従来型も新型LDMOSもバルク・ブレークダウンが発生

従来型と新型LDMOSのブレークダウン時における電子の 擬フェルミ電位と電界形状の比較

従来型LDMOS

新型LDMOS

RESURFのレベル: 従来型LDMOS <新型LDMOS

従来型と新型LDMOSでV_{DS,int} -V_{DS} の比較 at V_{GS}=0V

ブレークダウン時にゲート酸化膜(12nm)に掛かる電界: 2.3MV/cm(従来型LDMOS)、1.6MV/cm(新型LDMOS)≪酸化膜破壊電界(約10MV/cm)

まとめ

項目	従来型LDMOS	新型LDMOS
真性MOSFETのドレイン側ゲート端周りでの インパクト・イオン化による正孔電流密度	高	低
真性MOSFETのドレイン端周りの ドリフト領域内の電界の大きさ		低
ブレークダウンの箇所	バルク	バルク
ドレイン電流増大	<mark>強(Current Expansion)</mark> (増大: V _{DS} >25V and V _{GS} ≧5V)	<mark>弱</mark> (増大: for V _{DS} >40V and V _{GS} ≧5V)
$V_{DS,int}$ (V) at BV_{DS}	2.79	1.93
BV _{DS} (V)	68	61
RonA (m Ω mm ²)	68.7	69.3
$V_{\rm T}(V)$ at $I_{\rm DS}=1 \times 10^{-8} {\rm A}$	2.4	2.1

(1)ホットキャリア耐性:新型LDMOS≫従来型LDMOS(2)ESD耐性:新型LDMOS≒従来型LDMOS

本研究を進めるにあたり、3D TCADを貸して頂いた アドバンスソフト社に深謝致します。

この3D TCADは、国立研究開発法人科学技術振興機構 A-STEPプログラムの助成を受けてアドバンスソフト社で 開発されています。