

2015 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT2015) August 26-28, 2015 Sendai, Japan

A Gray Code Based Time-to-Digital Converter Architecture and its FPGA Implementation

Congbing Li Haruo Kobayashi

Gunma University

Gunma University Kobayashi Lab

Outline

- Research Objective & Background
- Flash TDC and Problems
- Gray Code
- Gray Code TDC Architecture
- FPGA Implementation
- RTL Verification of Glitch-free Characteristic
- Conclusion

Research Objective

Objective

- Development of
 - Time-to-Digital Converter (TDC) architecture with high-speed and small hardware

Approach

Utilization of Gray code

Research Background

TDC plays an important role in nano-CMOS era

Voltage-domain resolution facing difficulties due to reduced supply voltage

TDC measures time interval between two signal transitions, into digital signal.

(widely used in ADPLLs, jitter measurements, time-domain ADC)

Flash TDC

Problems of Flash TDC

An n-bit flash TDC with 2^{n} quantization levels

Advantages

High-speed timing measurement Single-event timing measurement All digital implementation

Disadvantages

 $2^{n}-1$ delay elements, $2^{n}-1$ Flip-Flops n-bit thermometer-to-binary code encoder

Large circuits High power consumption

Gray Code (1/2)

Gray Code

a binary numeral system where two successive values differ in only one bit

Decimal numbers	Binary Code	Gray Code	
0	0000	0000	
1	0001	0001	
2	0010	0011	
3	0011	0010	
4	0100	0110	
5	0101	0111	
6	0110	0101	
7	0111	0100	
8	1000	1100	
9	1001	1101	
10	1010	1111	
11	1011	1110	
12	1100	1010	
13	1101	1011	
14	1110	1001	
15	1111	1000	

Table. 4-bit Gray Code

- For Gray code, between any two adjacent numbers, only one bit changes at a time
- Gray code data is more reliable compared with binary code

Gray Code (2/2)

In a ring oscillator, between any two adjacent states, only one output changes at a time. This characteristic is very similar to Gray code.

8-stage Ring Oscillator Output					4-bit Gray Code						
RO	R1	R2	R3	R4	R5	R6	R7	G 3	G2	G1	G0
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	1
1	1	0	0	0	0	0	0	0	0	1	1
1	1	1	0	0	0	0	0	0	0	1	0
1	1	1	1	0	0	0	0	0	1	1	0
1	1	1	1	1	0	0	0	0	1	1	1
1	1	1	1	1	1	0	0	0	1	0	1
1	1	1	1	1	1	1	0	0	1	0	0
1	1	1	1	1	1	1	1	1	1	0	0
0	1	1	1	1	1	1	1	1	1	0	1
0	0	1	1	1	1	1	1	1	1	1	1
0	0	0	1	1	1	1	1	1	1	1	0
0	0	0	0	1	1	1	1	1	0	1	0
0	0	0	0	0	1	1	1	1	0	1	1
0	0	0	0	0	0	1	1	1	0	0	1
0	0	0	0	0	0	0	1	1	0	0	0

For any given Gray code, its each bit can be generated by a certain ring oscillator.

Gray Code based TDC Architecture (1/2)

A Gray code TDC architecture can be conceived by grouping a few ring oscillators

Figure. Proposed 6-bit Gray code TDC

Gray Code based TDC Architecture (2/2)

Figure. Gray code decoder

Flash vs. Proposed TDCs

for a measurement range of 26

	Flash TDC	Proposed T	DC		
Number of delay elements	64	62			
Number of Flip-flop	64	6			
The maximum stage	64	32			
for a measurement range of 2^n					
significant hardware reduction					
as # of bits increases.					

FPGA Implementation (1/3)

Proposed TDC implementation on Xilinx FPGA

Note: ADC is difficult to implement with full digital FPGA.

FPGA Implementation (2/3)

Proposed TDC operation is confirmed with FPGA evaluation.

FPGA Implementation (3/3)

Similarly, 8-bit Gray code TDC architecture was implemented on FPGA.

Measurement results of the proposed TDC with FPGA (8-bit case)

RTL Verification of Glitch-free Characteristic (1/2)

- The proposed Gray code TDC can provide a glitch-free binary code sequence even there are mismatches between the delay stages.
- RTL simulation was conducted to verify this characteristic.

RTL Verification of Glitch-free Characteristic (2/2)

• RTL simulation result shows that no matter there are mismatches among the delay stages or not, the proposed Gray code TDC can always output a glitch-free binary code sequence.

Conclusion

We have proposed a gray code based TDC architecture

- Comparable performance to Flash TDC
- Significant hardware & power reduction

for a measurement range of 2^n

	Flash TDC	Proposed TDC	Significant hardware
Number of delay elements	2^n	$2^{n} - 2$	increases.
Number of Flip-flop	2^n	п	
The maximum stage	2^n	2^{n-1}	

We have implemented the proposed TDC with FPGA

Confirmed its operation