P8-22

Proposal of High Reliability LDMOS Structure

Nobukazu Tsukiji, Junya Kojima, Haruo Kobayashi Jun-ichi Matsuda, Masataka Kamiyama,

Division of Electronics and Informatics, Gunma University, Kiryu 376-8515 Japan

Research Background & Objective

LDMOS···Laterally Diffused MOS

0 0

Adopting to automotive applications

If it were not highly reliable?

Accident !!!

Introduction

High reliability realization

- Reinforcement of Hot Carrier Endurance
 - ✓ Suppression of impact ionization
 - around drain edge of
 - intrinsic MOSFET of LDMOS
 - ✓ Suppression of Current Expansion (Kirk effect)
- Reinforcement of ESD Endurance
 - ✓ Generation of Bulk Breakdown

(pn junction breakdown location is in bulk.)

Proposed Structure

Comparison of Conventional & New

Result		
Items	Conventional LDMOS	New LDMOS
Hole current density around drain side gate edge of intrinsic MOSFET	High	Low
Magnitude of electric field in drift region around drain edge of intrinsic MOSFET	High	Low
Location of pn junction breakdown	Bulk	Bulk
Current increase	$\begin{array}{c} Strong \\ \textbf{(current expansion)} \\ & \text{(Generation for} \\ & \text{V}_{\text{DS}} \! > \! 25 \text{V} \text{ and } \text{V}_{\text{GS}} \! \ge \! 5 \text{V}) \end{array}$	$\underset{V_{DS}>40V \text{ and } V_{GS} \geq 5V}{Weak}$
$V_{DS,int}$ (V) at BV_{DS}	2.64	1.84
$BV_{DS}(V)$	68	61
RonA (m Ω mm ²)	68.7	69.3
$V_{\rm T}(V)$ at $I_{\rm DS}=1 \times 10^{-8} {\rm A}$	2.4	2.1

Summary

Conclusion

- Proposed a new LDMOS structure for automotive applications.
- Realized by forming dual p-buried layers.

Leading to high reliability and wide SOA.

References

[1] C. T. Kirk : "A Theory of Transistor Cutoff Frequency (ft) Falloff and High Current Densities", IRE Transactions on **Electron Devices (1962).**

[2] C.-C. Cheng, et. al. : "Investigation of Parasitic BJT Turn-on **Enhanced Two-stage Drain Saturation Current in High-voltage** NLDMOS", 23rd International Symposium on International Power Semiconductor Devices & IC's (2011).

[3] J. Chen : "HV EDMOS Design with Expansion Regime Suppression", Master Thesis of Applied Science, Department of **Electrical and Computer Engineering, University of Toronto (2013).**

Challenge for the future

• Reducing the on-resistance

• 3D Simulation, collaborating with

Toronto University, Canada

AdvanceSoft Corporation is acknowledged

for providing TCAD simulator.