Proposal of High Reliability LDMOS Structure

Jun-ichi Matsuda, Masataka Kamiyama, Nobukazu Tsukiji, Junya Kojima, Haruo Kobayashi

Division of Electronics and Informatics, Gunma University, Kiryu 376-8515 Japan

P8-22

Research Background & Objective

LDMOS...Laterally Diffused MOS
Used as high-voltage switching

Adopting to automotive applications

If it were not highly reliable ...??

Accident !!!

Introduction

High reliability realization

• Reinforcement of Hot Carrier Endurance
 ✓ Suppression of Impact ionization around drain edge of intrinsic MOSFET of LDMOS
 ✓ Suppression of Current Expansion (Kirk effect)
• Reinforcement of ESD Endurance
 ✓ Generation of Bulk Breakdown (pn junction breakdown location is in bulk.)

Impact Ionization & Current Expansion

Conventional LDMOS

Purpose of Doping

To suppress Current Expansion
⇒ ① Highly doped p-body ② V, adjustment ③ n-drift 2
RESURF
⇒ ④ Highly doped p-body around drift edge ⑤ p-well along drift region
Low RonA ⇒ ⑥ n-drift 2

New LDMOS

Purpose of Doping

To suppress Current Expansion
⇒ ① p-buried layer 1
⇒ ② Aperture of p-buried layer 2 under n+ drain region
Reinforcement of RESURF
⇒ ③ p-buried layer 1 around drift edge ④ p-buried layer 2 along drift region

Comparison of Conventional & New

Conventional LDMOS

- Peak reduction at drift region
- No peak at channel side of drift region

New LDMOS

- Flat characteristic and small value

Result

Table: Comparison of Conventional & New

Item	Conventional LDMOS	New LDMOS
Hole current density around drift side edge of intrinsic MOSFET	High	Low
Magnitude of electric field in drift region around drift side of intrinsic MOSFET	High	Low
Location of pn-junction breakdown	Bulk	Bulk
Current increase (current expansion)	Strong	Weak
at ① p-buried layer and ② n-drift 2		
$V_{DS,int}$ (V) at BV_{DS} | 2.64 | 1.84
BV_{DS} (V) | 68 | 61
RonA (mΩmm)2 | 68.7 | 69.3
$V_{DS,int}$ at $I_{DS}=10^{-9}$A | 2.4 | 2.1

Conclusion

• Proposed a new LDMOS structure for automotive applications.
• Realized by forming dual p-buried layers.
• Leading to high reliability and wide SOA.

Challenge for the Future

• Reducing the on-resistance
• 3D Simulation, collaborating with Toronto University, Canada

References

AdvanceSoft Corporation is acknowledged for providing TCAD simulator.