C6-5 0385 IEEE 11th International Conference on ASIC

Fibonacci Sequence Weighted SAR ADC Algorithm and its DAC Topology

<u>Takuya Arafune</u>, Yutaro Kobayashi Shohei Shibuya , Haruo Kobayashi

Gunma University, JAPAN

Supported by STARC

Nov. 06, 2015

Outline

- Objective
- SAR ADC Redundancy Design
- Proposed SAR Algorithm Using Fibonacci Sequence
 > Error Correction Range
 > Settling Time
- Realization of Fibonacci DAC

Conclusion

Outline

- <u>Objective</u>
- SAR ADC Redundancy Design
- Proposed SAR Algorithm Using Fibonacci Sequence
 > Error Correction Range
 > Settling Time
- Realization of Fibonacci DAC

Conclusion

Objective

 Development of <u>Reliable & High-speed</u> SAR ADC

Our Approach Redundancy search algorithm design with <u>Number Theory</u>

SAR ADC : Successive Approximation Register ADC

SAR ADC Configuration

		Step		2nd	3rd	4th	5th	
5bit-5step SAR ADC	Weight p(k)		16	8	4	2	1	output
		31						31
\land Appled Input \cdot 7.2 [\/]		30						30
Analog Input . 7.5 [V]		29						29
N Dinony woight :		28						28
Dinary weight.		27						27
		26						26
16, 8, 4, 2, 1		25						25
		24						24
	Level	23						23
Rute		22						22
		21						21
Laft? Diabt?		20						20
		19						19
		18						18
		17						17
		16						16
		15						15
		14						14
		13						13
		12						12
		11						11
		10						10
		9						9
		8						8
		7						7
		6						6
		5						5
		4						4
		3						3
		2						2
		1						1
		0						0

5bit-5step SAR ADC

Analog Input : [V]Binary weight :

Step		1st	2nd	3rd	4th	5th	tt	
Weight p(k)		16	8	4	2	1	σατρατ	
U	31						31	
	30						30	
	29						29	
	28						28	
	27						27	
	26						26	
	25						25	
	24						24	
	23						23	
	22						22	
	21						21	
	20						20	
	19		Down!					
	18							
	17							
aval	16						16	
_evei	15						15	
	14						14	
	13						13	
	12						12	
	11						11	
	10						10	
	9						9	
	8		V				8	
	7						7	
	6						6	
	5						5	
	4						4	
	3						3	
	2	l] ∩ [2	
	1] 🗸 [1	
	0						0	

5bit-5step SAR ADC

Analog Input : [V]Binary weight :

Step Weight p(k)		1st	2nd	3rd	4th	5th	
		16	8	4	2	1	ουτρυτ
	31						31
	30						30
	29						29
	28						28
	27						27
	26						26
	25						25
	24						24
	23						23
	22						22
	21						21
	20						20
	19						19
	18						18
	17						17
	16						16
Levei	15						15
	14						14
	13						13
	12						12
	11						11
	10				DI		10
	9						9
	8		V				8
	7						7
	6						6
	5				1		5
	4						4
	3						3
	2	1 n 1	T ∩ T	1			2
	1		T V [1
	0	r	- <u> </u>				0

5bit-5step SAR ADC

Analog Input : [V]Binary weight :

7.3
$$\Rightarrow$$
00111 \Rightarrow 7
 \checkmark \checkmark \checkmark
16 $-8-4+2+1+0.5-0.5=7$

Step		1st	2nd	3rd	4th	5th	
Weight p(k)		16	8	4	2	1	ουτρυτ
	31						31
	30						30
	29			~~~~~~			29
	28			~~~~~~	~~~~~~		28
	27						27
	26						26
	25						25
	24						24
	23						23
	22						22
	21						21
	20						20
	19						19
	18						18
	17						17
امىرم ا	16						16
Levei	15						15
	14						14
	13		\				13
	12						12
	11						11
	10						10
	9						9
	8		V				8
	7						7
	6					/	6
	5			<u> </u>	7		5
	4						4
	3						3
	2	∩ []		1	1 L	1 [2
	1	🚩					1
	0				·r·		0

Outline

Objective

SAR ADC Redundancy Design

- Proposed SAR Algorithm Using Fibonacci Sequence
 Error Correction Range
 Settling Time
- Realization of Fibonacci DAC

Conclusion

SAR ADC Redundancy Design

Redundancy Design Operation(No Error)

Redundancy Design Operation(One Error)

Issues of Conventional Method

Outline

- Objective
- SAR ADC Redundancy Design
- Proposed SAR Algorithm Using Fibonacci Sequence
 <u>Error Correction Range</u>
 - Settling Time
- Realization of Fibonacci DAC

Conclusion

Fibonacci Sequence

Fibonacci Definition

$$F_0 = 0$$

$$F_1 = 1$$

$$F_{n+2} = F_n + F_{n+1}$$
 (n=0,1,2...)

Example of Fibonacci number

Leonardo Fibonacci (Italy:1170-1250)

Property

The closest terms ratio :

(about 1.62 number)

$$\lim_{n \to \infty} \frac{F_n}{F_{n-1}} = 1.618033988749895$$

Use of Fibonacci Sequence

Fibonacci Weighted (Radix=1.62)

Realize 1.62 weighted by using only integer

Fibonacci sequence SAR ADC Step Detect new natures of two points ! 33 1. Correctable range q(k) is always Fibonacci number F_{M-k-1} . 29 2. q(k) is exactly in contact q(k+1) without overlap. 21

Step		1st	2nd	3rd	4th	5th	6th	7th
Weigh	tp(k)	16	8	5	3	2	1	1
	33							
	32							
	31							
	30							
	29							
	28							
	27							
	26							
	25							
	24							
	23							
	22							
	21							
	20							
	19							
	18							
	17							
	16							
	15							
	14							
	13							
	12							
	11							
	10							
	9							
	8							
	7							
	6							
	5							
	4							
	3							
	2							
	1							
	0							
	-1							
	-2			[[

Fibonacci sequence SAR ADC

Detect new natures of two points !

- 1. Correctable range q(k) is always Fibonacci number F_{M-k-1} .
- 2. q(k) is exactly in contact q(k+1) without overla

without overlap.

Comparison with Conventional Method

5bit SAR ADC Conventional method Radix=1.7 Radix is <u>bigger</u> than 1.62

Proposed method

1.62

Standard !

Conventional method

1.55

Outline

- Objective
- SAR ADC Redundancy Design
- Proposed SAR Algorithm Using Fibonacci Sequence
 > Error Correction Range

Settling Time

Realization of Fibonacci DAC

Conclusion

Settling Time

DAC Settling Time at Every Step

25/40

Shorten Conversion time

Reduction of Settling Time

5bit SAR ADC

Binary search

Comparison of Incomplete Settling Time ^{27/40}

At fixed clock,

Fibonacci is the shortest AD conversion time !!

Outline

- Objective
- SAR ADC Redundancy Design
- Proposed SAR Algorithm Using Fibonacci Sequence
 > Error Correction Range
 > Settling Time
- <u>Realization of Fibonacci DAC</u>

Conclusion

Binary SAR ADC Configuration

Fibonacci SAR ADC Configuration

Fibonacci SAR ADC Configuration

Conventional and Proposal DAC

S₁

R≶

 S_2

2R

R ₩-

Conventional

- R-2R resistor ladder
 - ⇒Generate **binary** voltage

Change all resistors to R

R-2R resistor ladder

 S_3

2R≶

R W

Proposal

R-R resistor ladder ⇒Generate Fibonacci voltage

Realize Fibonacci DAC by using simple circuit !

S₅ S_4 S_3

S₄

2R≶

R Wr

S₁ S_2 R Wr R ሙ R R ₩ Vout R≩

R-R resistor ladder

Vout

S₅

R W

Principle of Fibonacci Voltage

33/40

New property

Divides current into Fibonacci ratio in each node

Proposal of R//R Fibonacci DAC

R-R resistor ladder

Generate Fibonacci voltage of odd term

Fibonacci DAC simulation

Simulation Result

Outline

- Objective
- SAR ADC Redundancy Design
- Proposed SAR Algorithm Using Fibonacci Sequence
 > Error Correction Range
 > Settling Time
- Realization of Fibonacci DAC

<u>Conclusion</u>

Conclusion

Propose redundant SAR ADC design methods

Get important properties by using Fibonacci sequence
 Reliable

Correctable difference covers <u>wide</u> input range

Shortest-Conversion

Conversion time is <u>shortest</u> in a fixed clock

Radix-Standard

Golden ratio φ establish radix standard

Propose <u>beautiful</u> DAC structures which generate Fibonacci voltages.

Final Statement

"The world is made <u>of mathematics</u>"

by Isaac Newton

Isaac Newton (UK:1642-1727)

ADC + Mathematics = New mysterious property

Beautiful mathematics leads to beautiful circuit.

