

EMI Reduction by Analog Noise Spread Spectrum In Ripple Controlled Converter

Yasunori Kobori, <u>Taifeng Wang</u>^{*}, Nobukazu Tsukiji Nobukazu Takai, Haruo Kobayashi

National Institute of Technology, Oyama College Gunma University

- Introduction
- Ripple Controlled Converter and Spread Spectrum
- Spread Spectrum with Analog Noise Generator
- Ripple Converter with Analog Noise Modulation
- Conclusion

Introduction

- Ripple Controlled Converter and Spread Spectrum
- Spread Spectrum with Analog Noise Generator
- Ripple Converter with Analog Noise Modulation
- Conclusion

Research Background

• 2.5 V, 1.2 V etc.

EMI Issues

Research Objective

Ripple controlled switching converter

- fast transient response
- small circuitry
- No clock, No saw-tooth signal generator

Research Objective EMI reduction of ripple controlled converter

Our Approach

New spread spectrum method with pseudo analog noise

Introduction

- Ripple Controlled Converter and Spread Spectrum
- Spread Spectrum with Analog Noise Generator
- Ripple Converter with Analog Noise Modulation

Conclusion

Conventional Rippled Controlled Converter (Configuration)

Hysteresis buck converter

Ripple Controlled Converter Simulation (Time Domain)

Ripple Controlled Converter Simulation (Freq. Domain)

Simulated spectrum of the switching pulse of the conventional ripple controlled converter

Synchronized Ripple Controlled Converter (Configuration)

Switch (S4) control signal is synchronized with clock pulse.

Stable operation

Synchronized Ripple Controlled Converter (Time Domain)

★ Simulation Results

Ripple level is a little bit large (about 13 mVpp) when the output current is changed to 1.0 A.

Simulated output ripple, switching pulse and step response of new ripple controlled converter

Synchronized Ripple Controlled Converter (Freq. Domain)

\star Simulation Results

- Output voltage ripple : 8 mVpp
- Clock frequency: 1.0 MHz
- Major period of control pulse:
 3us or 6us
- Ripple frequencies of the control pulse: 500kHz, 250kHz, 125kHz
- Peak levels: 450mV, 900mV, 2500mV

Voltage

Simulated spectrum of

control pulse without analog noise modulation

- Introduction
- Ripple Controlled Converter and Spread Spectrum
- Spread Spectrum with Analog Noise Generator
- Ripple Converter with Analog Noise Modulation
- Conclusion

Analog Noise Generator

M-sequence circuit

- Digital random noise generator
- Consists of an n-bit counter, EXOR gates
- Number of pulse levels : N=2ⁿ-1
- Primitive polynomials (ex. 3 degrees)
 - (a) $G(s) = x^3 + x^2 + 1$ (b) $G(s) = x^3 + x + 1$

(a)

 $x^{3}+x^{2}+1$

Output waveforms

Spread Spectrum with Analog Noise Generator

EMI reduction with digital and analog spread spectrum techniques

* M-sequence + DAC \Rightarrow Random Pattern Generator $* + LPF \Rightarrow$ Analog Smooth Signal (Periodic) * +PLL ⇒ Non-Periodic Frequency Modulated Pulses * Step response of PLL circuit is unsteady.

Step response of PLL circuit

- Introduction
- Ripple Controlled Converter and Spread Spectrum
- Spread Spectrum with Analog Noise Generator
- <u>Ripple Converter with Analog Noise Modulation</u>
- Conclusion

Proposed Ripple Controlled Converter with SSCG

SSCG: Spread Spectrum Clock Generator

Ripple Converter with Analog Noise Modulation (Time Domain)

with the proposed analog noise modulation

Ripple Converter with Analog Noise Modulation (Feq. Domain)

 \star Simulation Results

The highest peak level of the spread spectrum:
700 mV at 125 kHz reduction by 1.8V (-5.5dB).

At 250 kHz, the peak level is reduced by 700 mV (-6.5dB).

Simulated spread spectrum of

new ripple controlled converter with analog noise modulation

- Introduction
- Ripple Controlled Converter and Spread Spectrum
- Spread Spectrum with Analog Noise Generator
- Ripple Converter with Analog Noise Modulation

Conclusion

Conclusion

- Fast response
- Small circuit

Synchronization

Stable Operation

Spread spectrum clock with analog noise M-sequence circuit + DAC + LPF + PLL

EMI Reduction

Effectiveness is confirmed with simulation

Thank you for listening 謝謝