B3-4 IEEE 11th International Conference on ASIC 11:30-11:45 am Chengdu, China Nov. 5, 2015 (Thursday)

Flat Passband Gain Design Algorithm for 2nd-order RC Polyphase Filter

Y. Niki, <u>S. Sasaki</u>, N. Yamaguchi J. Kang, T. Kitahara, H. Kobayashi

- Roles of RC Polyphase Filter
- Transfer Function of RC Polyphase Filters
- Flat Passband Gain Algorithm for 2nd-order Filter

Summary

- Roles of RC Polyphase Filter
- Transfer Function of RC Polyphase Filters
- Flat Passband Gain Algorithm for 2nd-order Filter

Summary

To establish

systematic design and analysis methods of RC polyphase filters.

To derive

flat passband gain algorithm for 2nd-order filter

To demonstrate usefulness of Nyquist chart

Roles of RC Polyphase Filter

- Transfer Function of RC Polyphase Filters
- Flat Passband Gain Algorithm for 2nd-order Filter

Summary

Features of RC Polyphase Filter

- Its input and output are complex signals.
- Passive RC analog filter
- One of key components in wireless transceiver analog front-end
 - I, Q signal generation
 - Image rejection
- Its design and analysis methods have not been fully developed yet.

First-order RC Polyphase Filter

Differential Complex Input:Vin = Iin + j QinDifferential Complex Output:Vout = Iout + j Qout

I, Q Signal Generation From Single Sinusoidal Input

Cosine, Sine Signals in Receiver

They are used for down conversion

3rd-order harmonics rejection

$$Iin = \cos(\omega_{LO}t) + B\cos^{3}(\omega_{LO}t)$$

$$Iout = A\cos(\omega_{LO}t + \theta)$$

$$Filter$$

$$Qout = A\sin(\omega_{LO}t + \theta)$$

 $Q_{in} = \sin(\omega_{LO}t) + B\sin^3(\omega_{LO}t)$

With 3rd-order harmonics

Without 3rd-order harmonics

Simulation of 3rd-order harmonics rejection

$$I_{in}(t) = \cos(\omega_{L0}t) + B\cos^{3}(\omega_{L0}t)$$
$$Q_{in}(t) = \sin(\omega_{L0}t) + B\sin^{3}(\omega_{L0}t)$$

$$3\omega_{LO} = \frac{1}{R_1 C_1}$$

$$I_{OUT}(t) = Acos(\omega_{LO}t + \theta)$$
$$Q_{OUT}(t) = Asin(\omega_{LO}t + \theta)$$

Amplitudes of I,Q signals differ significantly.

2nd-order RC Polyphase Filter

Problem of large amplitude difference between Iout, Qout can be alleviated

$$\omega_{LO} = \frac{2}{R_1 C_1}$$

3rd-order RC Polyphase Filter

Amplitude difference problem is further alleviated.

 ω_{LO}

 $\overline{R_1 C_1}$

Roles of RC Polyphase Filter

Transfer Function of RC Polyphase Filters

● Flat Passband Gain Algorithm for 2nd-order Filter

Summary

Transfer Function of RC Polyphase Filter

- Complex Signal Theory
- Complex inputComplex output

$$V_{in}(j\omega) = I_{in} + jQ_{in}$$
$$V_{out}(j\omega) = I_{out} + jQ_{out}$$

Complex
 Transfer Function

 $=\frac{V_{out}(j\omega)}{V_{in}(j\omega)}$ $G(j\omega)$

Transfer Function of 1st-order RC Polyphase Filter

Differential signal

$$I_{in}(t) = I_{in+}(t) - I_{in-}(t)$$

$$Q_{in}(t) = Q_{in+}(t) - Q_{in-}(t)$$

$$I_{out}(t) = I_{out+}(t) - I_{out-}(t)$$

$$Q_{out}(t) = Q_{out+}(t) - Q_{out-}(t)$$

Complex signal

$$V_{in}(t) = I_{in}(t) + jQ_{in}(t)$$
$$V_{out}(t) = I_{out}(t) + jQ_{out}(t)$$

Transfer Function of 1st-order RC Polyphase Filter

Explanation of I, Q Signal Generation by G₁(jω)

$$\begin{aligned} Q_{in}(t) &\equiv 0, \qquad I_{in}(t) = \cos(\omega t) \\ V_{in}(t) &= I_{in}(t) + j \ Q_{in}(t) = \cos(\omega t) = \frac{1}{2} [e^{j\omega t} + e^{-j\omega t}] \\ & & & & & & & & \\ \hline V_{out}(t) &= \frac{1}{2} [|G_1(j\omega)|e^{j(\omega t + \angle G_1(j\omega))} + |G_1(-j\omega)|e^{j(-\omega t + \angle G_1(-j\omega))}] \\ &= \frac{\sqrt{2}}{2} \cos\left(\omega t - \frac{\pi}{4}\right) + \frac{j\sqrt{2}}{2} \sin(\omega t - \frac{\pi}{4}) \\ & & & & & & & & \\ Here \\ & & & & & & & & & \\ |G_1(-j\omega)|e^{j(-\omega t + \angle G_1(-j\omega))}] = 0 \end{aligned}$$

 $\omega =$

RC

Transfer Function of 2nd-order RC Polyphase Filter

Transfer Function

$$G_2(j\omega) = \frac{(1+\omega R_1 C_1)(1+\omega R_2 C_2)}{1-\omega^2 R_1 C_1 R_2 C_2 + j\omega (C_1 R_1 + C_2 R_2 + 2R_1 C_2)}$$

Derivation is very complicated, so we used "Mathematica."

- Roles of RC Polyphase Filter
- Transfer Function of RC Polyphase Filters

Flat Passband Gain Algorithm for 2nd-order Filter

Summary

Why 2nd-order RC Polyphase Filter ?

- 1st-order RC polyphase filter
 - Performance is limited.

2nd-order
 Handy, good performance
 Widely used.

3rd-order

Circuit is complicated.

Need for Flat Passband Gain Algorithm of 2nd-order RC Polyphase Filter

Transfer Function

$$G_2(j\omega) = \frac{(1+\omega R_1 C_1)(1+\omega R_2 C_2)}{1-\omega^2 R_1 C_1 R_2 C_2 + j\omega (C_1 R_1 + C_2 R_2 + 2R_1 C_2)}$$

Four Design Parameters

4 parameters : R_1, R_2, C_1, C_2

$$\omega_{1} = \frac{1}{R_{1}C_{1}}, \omega_{2} = \frac{1}{R_{2}C_{2}}, X = \frac{1}{R_{2}C_{1}}, Y = \frac{1}{R_{1}C_{2}}$$

4 constraints

Two Constraints from Filter Spec.

• 2 zeros :
$$-\omega_1 = \frac{-1}{R_1C_1}$$
, $-\omega_2 = \frac{-1}{R_2C_2}$
are given from the filter specification.

Proposed Algorithm Uses Third Constraint

- We use the third constraint $X = \frac{1}{R_2 C_1}$ for passpand gain flattening.
- The fourth constraint is left for ease of IC realization.

Nyquist Chart of G₂(jω)

 $|G_2(j\omega_1)| = |G_2(j\omega_2)|$

But in general

 $|G_2(j\omega_1)| = |G_2(j\omega_2)| \neq |G_2(j\sqrt{\omega_1\omega_2})|$

Our Idea for Flat Passband Gain Algorithm

Gain characteristics $|G_2(j\omega)|$

Nyquist chart of $G_2(j\omega) = X(\omega) + j Y(\omega)$

If we make $|G_2(j\omega_1)| = |G_2(j\omega_2)| = |G_2(j\sqrt{\omega_1\omega_2})|$, gain would be flat from ω_1 to ω_2 .

Solving Third Constraint

We need a positive real solution of ω_{21} .

Condition for Solution

Third constraint

$$\omega_{21} = \frac{1}{R_2 C_1} = \frac{-\beta + \sqrt{\beta^2 - 4\alpha\gamma}}{2\alpha}$$

$$\begin{aligned} \alpha &= 6\omega_1^2 + 6\omega_2^2 + 4\omega_1\omega_2 - 8\sqrt{\omega_1\omega_2}(\omega_1 + \omega_2) \\ \beta &= 6\omega_1^3 + 6\omega_2^3 + 10\omega_1\omega_2(\omega_1 + \omega_2) - 8\sqrt{\omega_1\omega_2}(\omega_1 + \omega_2)^2 \\ \gamma &= \omega_1^4 + \omega_2^4 + 2\omega_1\omega_2(\omega_1^2 + \omega_2^2 + 5\omega_1\omega_2) \\ -4\sqrt{\omega_1\omega_2}(\omega_1^3 + \omega_1^2\omega_2 + \omega_1\omega_2^2) \end{aligned}$$

For a positive real
$$\omega_{21} \Rightarrow 0.79142 < \frac{\omega_1}{\omega_2} < 12.63556$$

This is obtained from numerical calculation.

Numerical Simulation Result of Our Algorithm

Passband gain becomes flat.

Image Rejection Ratio (IRR)

Nyquist Chart & Image Rejection Ratio

Nyquist chart visualizes image rejection ratio.

- Roles of RC Polyphase Filter
- Transfer Function of RC Polyphase Filters
- Flat Passband Gain Algorithm for 2nd-order Filter

- We have clarified operation of RC polyphase filters using their complex transfer functions.
- We have derived a flat passband gain algorithm for 2nd-order filter
- We have demonstrated usefulness of Nyquist chart for algorithm and image rejection ratio derivation.

Thank you for listening

羅針盤

Nyquist chart is like a compass.