A Study on HCI Induced Gate Leakage Current Model Used for Reliability Simulations in 90nm n-MOSFETs

Nobukazu Tsukiji*

H.Aoki, M.Kazumi, T.Totsuka,

M.Higashino and H.Kobayashi

Faculty of Science and Technology,

Gunma University

(D3-3)

- Research Background
- Purpose of This Work
- Conventional HCI degradation model
- Model Derivations
- Measurement and Model Verifications
- Summary and Future Research

- Research Background
- Purpose of This Work
- Conventional HCI degradation model
- Model Derivations
- Measurement and Model Verifications
- Summary and Future Research

Research Background(1)

- There is an increasing interest in the reliability issues of CMOS transistors.
- Especially, HCI degradation is the most important phenomenon in high electric fields.
- Reliability simulation using the degradation models is needed in order to develop robust analog and digital CMOS LSI designs.

Research Background(2)

- CHC: Channel Hot Carrier $(V_G = V_D)$
- DAHC: Drain Avalanche Hot Carrier ($V_G < V_D$)
 - a large amount of hot electrons is injected more than in the CHC phenomenon

Two different hot carrier injection mechanisms

ASICON – Chengdu 3-6 November 2015

- Research Background
- Purpose of This Work
- Conventional HCI degradation model
- Model Derivations
- Measurement and Model Verifications
- Summary and Future Research

Purpose of This Work

• To develop

HCI degradation model of n-MOSFETs that is not dependent on the structure.

- To develop parameter extraction method for the proposed model with 90nm n-MOSFETs.
- To implement the proposed model into BSIM4 source codes of our MDT-SPICE (SPICE3 fully compatible simulator).

- Research Background
- Purpose of This Work
- Conventional HCI degradation model
- Model Derivations
- Measurement and Model Verifications
- Summary and Future Research

Conventional HCI Degradation Model

• Hu model

HCI is expressed in terms of the number of generated interface states ΔN_{it}

$$\Delta N_{it} = C_1 \left[t \frac{I_{DS}}{W} \exp\left(-\frac{\phi_{it}}{q \lambda E_m}\right) \right]^n$$

E_m is difficult to obtain accurately with analytical models
 HCI stress is conventionally monitored as a function of the substrate current *I_{sub}*

$$\Delta N_{it} = C_2 \left(\frac{I_{sub}}{W}\right)^{\alpha} t^n$$

 ΔN_{it} changes the threshold voltage (V_{th}) and the carrier mobility (μ)

$$V_{th} = V_{th0} + \frac{q\Delta N_{it}}{C} \qquad \qquad \mu = \frac{\mu_0}{1 + \beta \Delta N_{it}}$$

ASICON – Chengdu 3-6 November 2015

Disadvantage of I_{sub} Model

• Conventional models cannot be applied for

any circuit simulations

without using the substrate terminal

An n-MOSFET with Butting Contact structure

Concept of Proposed Model

• The proposed model is an attempt to extract the HCI current from the gate terminal

- Research Background
- Purpose of This Work
- Conventional HCI degradation model
- Model Derivations
- Measurement and Model Verifications
- Summary and Future Research

Model Derivations(1)

The gate and substrate currents in HCI model by Chenming Hu are written as

$$I_{sub} = C_1 I_{ds} e^{\frac{-\varphi_i}{q\lambda E_m}}$$

$$I_g = C_2 I_{ds} e^{\frac{-\varphi_b}{q\lambda E_m}}$$

$$\int_{n+}^{\sqrt{g}} \int_{g}^{\sqrt{g}} \int_{g}^{\sqrt{p}} \int_{g}^{\sqrt{p}$$

olimits v₀ ♥ Isub

I_g depends on the probability of electrons which traverse the Si-SiO₂ interface

(1)

(2)

I_{sub} depends on the probability of the occurrence of impact ionization

Model Derivations(2)

BSIM4 model supports substrate current induced body effect (SCBE) caused by the impact ionization effect as

$$I_{sub} = \frac{A_i}{B_i} I_{ds} (V_{ds} - V_{dsat}) e^{\frac{-B_i \cdot litl}{V_{ds} - V_{dsat}}}$$
(3)

To modify the ionization ratio between the substrate and the gate currents, the gate current due to HCI is simply written in eq. (4) as referred to eqs. (1) and (2)

$$I_{gs_{-}HCI} = \frac{GA_{i}}{GB_{i}} I_{ds} (V_{ds} - V_{dsat}) e^{\frac{-GB_{i} \cdot litl}{V_{ds} - V_{dsat}}}$$
(4)

ASICON – Chengdu 3-6 November 2015

Model Derivations(3)

Gate Direct Tunneling Current Model in BSIM4

 I_{gb} , I_{gd} , I_{gcd} are modeled in advance Model parameters, GAi and GBi are extracted with eqs. (4) and (5)

$$I_{gs_HCI} = I_{gs_total} - I_{gs} - I_{gcs}$$
⁽⁵⁾

ASICON – Chengdu 3-6 November 2015

- Research Background
- Purpose of This Work
- Conventional HCI degradation model
- Model Derivations
- Measurement and Model Verifications
- Summary and Future Research

Characteristic of Gate Leak Current Under Non-HCI Condition

ASICON – Chengdu 3-6 November 2015

Characteristic of Drain Leak Current Under Non-HCI Condition

ASICON – Chengdu 3-6 November 2015

Characteristic of Total Gate Leak Current Under HCI Condition

- Research Background
- Purpose of This Work
- Conventional HCI degradation model
- Model Derivations
- Measurements and Model Verifications
- Summary and Future Research

Summary

- We presented a new model and its extraction method to estimate the HCI current from the gate terminal without using the substrate terminal
- Simulation with the proposed model accurately agreed with 90 nm n-MOSFET measurements under the HCI conditions.
- It is also found that HCI induced gate leakage current is so small (few pico-amps) that

accurate measurement is not easily performed

Future Research

We continue this work
 to complete the degradation model

to be used in EDA environments

 We will also focus on reliability modeling for high power MOSFETs

質疑応答

- 質問1
 - なぜ90nmのプロセスを選んだのか?
- 回答1
 - 選んだわけではない。90nmの試作チャンスを得たので90nmになった。
- 質問2
 - 90nmプロセス以外にもこの方法は有効か?
- 回答2
 - 提案モデルは他のプロセスにも応用可能。
 しかし、HCIのゲート電流は小さいので、正確に 測定することは容易ではない。