

High-Frequency Low-Distortion Signal Generation Algorithm with AWG

Shohei Shibuya,

Yutaro Kobayashi Haruo Kobayashi

Gunma University

Objective

Low-distortion sine wave generation for ADC test

Our Approach

DSP algorithm using AWG

AWG : Arbitrary Waveform Generator

- Research background
- Phase-switching algorithm
- Proposed solution
- Theoretical analysis
- Conclusion

- Research background
- Phase-switching algorithm
- Proposed solution
- Theoretical analysis
- Conclusion

Research background

ADC Test Cost Using AWG

Conventional ADC Test

Inexpensive AWG output includes HD3

HD3: 3rd order Harmonic Distortion

Conventional ADC nonlinearity test

Over estimate of HD3

Accurate ADC linearity test with inexpensive AWG

- Only DSP program change
- No hardware change
- No requirement for AWG nonlinearity identification

- Research background
- Phase-switching algorithm
- Proposed solution
- Theoretical Analysis
- Conclusion

- $X_0 = A \cos(2\pi f_{in}nT_s + \varphi_0) ... n:$ even $X_1 = A \cos(2\pi f_{in}nT_s + \varphi_1) ... n:$ odd

 $\varphi = \varphi_0 - \varphi_1 = \pi/N$ HDN is cancelled.

Simulation Result of Phase Switching Signal ^{12/31}

Principle of 3rd Harmonics Cancellation

Two waves with phase difference π are cancelled

13/31

- Research background
- Phase-switching algorithm
- Proposed solution
- Theoretical Analysis
- Conclusion

15/31

"Distortion shaping" cancels HD3, but spurious around fs/2 appears.

We propose phase switching method for high frequency

High frequency low distortion signal generation

Interleave sampling X_0 , X_1 every one clock

- $X_0 = A \cos(2\pi f_{in}nT_s + \varphi_0) ... n:$ even $X_1 = A \cos(2\pi f_{in}nT_s + \varphi_1) ... n:$ odd

$$\varphi = \varphi_0 - \varphi_1 = 2\pi/N \Longrightarrow$$

N-th order image is cancelled

Unified Principle of Low-Distortion Signal Generation^{17/31}

HD3 Component Cancellation

AWG Output with Conventional Method 19/31

$$D_{in} = \sin(2\pi f_{in_conv} nT_s)$$

Simulation Result of Proposed Method 20/31

- $X_0 = A \cos(2\pi f_{in} n T_s + \pi/3) \dots n$: even
- $X_1 = A \cos(2\pi f_{in} n T_s \pi/3) \dots n: odd$

3f_{out} component

is cancelled

Low-Distortion High-Frequency Signal 21/31

ADC Output with HPF

No attenuation of fin component

Attenuation of fin component with HPF

If fin component is NOT reduced

If fin component is reduced by HPF

ADC HD3 component is cancelled (ADC 3rd distortion cannot be measured)

Accurate ADC HD3 measurement

- Research background
- Phase-switching algorithm
- Proposed solution
- Theoretical Analysis
- Conclusion

Model for Theoretical Analysis

AWG Input with Phase Switching

$$D_{in}(nT_s) = \begin{cases} A \cdot \sin\left(2\pi f_{in}nT_s - \frac{\pi}{3}\right) & n: odd \\ A \cdot \sin\left(2\pi f_{in}nT_s + \frac{\pi}{3}\right) & n: even \end{cases}$$

AWG Nonlinearity Model

 $Y(nTs) = a_1 D_{in}(n) + a_3 \{D_{in}(n)\}^3$

ADC Nonlinearity Model

$$Z(n) = b_1 Y(nT_s) + b_3 \{Y(nT_s)\}^3$$

AWG Output Theoretical Analysis

Proposed method uses this component

f_{in}: input frecuency

 f_s : sampling frecuency

ADC Output Without HPF

ADC output

$$Z(nT_{s}) = b_{1}Y + b_{3}Y^{3}$$

$$= \{b_{1}R + \frac{3}{4}b_{3}R(R^{2} + 2\alpha\beta PQ + 2\beta^{2}Q)\}\cos(2\pi \left(\frac{f_{s}}{2} - f_{in}\right)nT_{s})$$

$$+ \left\{\frac{1}{4}b_{3}R(R^{2} - 3\alpha^{2}P^{2})\right\}\cos\left\{2\pi \left(\frac{f_{s}}{2} - 3f_{in}\right)nT_{s}\right\}$$

$$+ \cdots$$

$$\left\{\frac{1}{4}b_{3}R(R^{2} - 3\alpha^{2}P^{2})\right\} = -\frac{3\sqrt{3}}{32}b_{3}A^{2}\left(a_{1}A + \frac{3}{4}a_{3}A^{3}\right)(\alpha^{2} - 1)$$

$$Coefficient of \cos\left(2\pi \left(\frac{f_{s}}{2} - 3f_{in}\right)nT_{s}\right)$$

Coefficient of HD3

Coefficient of ADC HD3
=
$$-\frac{3\sqrt{3}}{32}b_3A^2\left(a_1A + \frac{3}{4}a_3A^3\right)(\alpha^2 - 1)$$

- When filter $\alpha = 1$, \longrightarrow ADC HD3 Cancelled
- When filter $\alpha \neq 1$,

Accurate measurement of ADC HD3

Attenuation by a factor of 1/10 with HPF is easy

- Reserch background
- Phase-switching algorithm
- Proposed solution
- Theoretical Analysis
- Conclusion

- We have proposed high-frequency low-distortion signal generation algorithm with AWG.
- Needs only a simple analog HPF.
- No need for AWG nonlinearity identification
- Simulation shows that measurement error of ADC HD3 is as low as 1.7%.

Thank you for your kind attention!

Accurate measurement has been very important from thousands years ago.

度量衡 統一 by 始皇帝

