
Flat Passband Gain Design Algorithm for 2
nd

-order RC Polyphase Filter                       

Yoshiki Niki, Shu Sasaki, Nobu Yamaguchi, Jian Kang, Takashi Kitahara, Haruo Kobayashi 

  Division of Electronics and Informatics, Gunma University, Kiryu, Gunma 376-8515 Japan 

* Email: k_haruo@el.gunma-u.ac.jp 

 

Abstract – This paper describes a design algorithm of a 

2
nd

-order RC polyphase filter to obtain its flat passband 

gain. The condition for its solution is shown and the im-

age rejection ratio formula is also derived. Its effective-

ness is demonstrated by numerical calculation in several 

cases. 
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1. Introduction   

RC polyphase filters are important components in analog 

front-ends of wireless transceivers; they are used for 

In-Phase and Quadrature (I and Q) signal generation and 

for image rejection [1,2]. RF circuit designers prefer to 

choose the 2
nd

-order RC polyphase filter for practical 

application because it is effective compared to the 

1
st
-order one and not so complicated compared to the 

higher order ones, In this paper we propose an explicit 

design algorithm for a flat-passband 2
nd

-order RC poly-

phase filter; 3 equations are given for 4 variables (R1, R2, 

C1, C2) and hence one design freedom is left for the de-

signer. Also the image rejection ratio is given when the 

proposed algorithm is used. Numerical simulations in 

several cases demonstrate the effectiveness of the pro-

posed algorithm. 

 

2. Transfer Function   

Let us consider a 2
nd

-order RC polyphase filter in Fig.1 

and define the following: 

Iin(t) ∶=  Iin+(t)  −  Iin−(t),  Qin(t) ∶=  Qin+(t)  − Qin−(t) 

Iout(t): =  Iout+(t) −  Iout−(t),  Qout(t): =  Qout+(t) −  Qout−(t). 

Define complex signals Vin(t) and Vout(t) as follows: 

Vin(t) ∶=  Iin(t)  +  jQin(t) 

Vout(t) ∶=  Iout(t)  +  jQout(t). 

Letting Vin(𝑗𝜔), Vout(𝑗𝜔) be the Fourier transform of 

Vin(t), Vout(t), and then the frequency transfer function 

𝐺2(𝑗𝜔) is obtained as follows: 

𝐺2(𝑗𝜔): =
Vout(𝑗𝜔)

Vin(𝑗𝜔)
 

=
(1 +  𝜔𝑅1𝐶1)(1 +  𝜔𝑅2𝐶2)

1 − 𝜔2𝑅1𝐶1𝑅2𝐶2 + 𝑗𝜔(𝑅1𝐶1 + 𝑅2𝐶2 + 2𝑅1𝐶2)
. (1) 

We define as follows: 

𝜔1 ∶=
1

𝑅1𝐶1
 , 𝜔2 ∶=

1

𝑅2𝐶2
,  𝜔12 ∶=

1

R1C2
 , 𝜔21 ∶=

1

𝑅2𝐶1
. 

We see that 𝐺2(𝑗𝜔) has zeros at −𝜔1, −𝜔2. 

 

Fig.1: 2nd-order RC polyphase filter.  

3. Proposed Design Algorithm  

In this section, we propose a design algorithm for 2nd-order 

filters to make their passband gain flat. Let us consider design 

of a 2nd-order RC polyphase filter; we will determine the four 

parameter values of R1, R2, C1 and C2. For example, look at 

Fig.2, where the stopband is between −𝜔2 and  −𝜔1 

and the passband is between  𝜔1 and  𝜔2 with 𝜔1 = 

1.0, 𝜔2 = 7.58. We see that the gain in the passband is not flat 

in Fig.2 (a) with ω21 = 2.0,  but it is flat in Fig.2 (b) with ω21 

= 0.44 which is obtained by our proposed algorithm. 

 

(a) ω21 = 2.0. Gain in the passband is NOT flat. 

 

(b) ω21 = 10.44. Gain in the passband is flat. 

Fig.2: Gain characteristics of a 2nd-order RC polyphase filter 

with ω1 = 1.0, ω2 = 7.58.   
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Problem Formulation: 

Filter Specification 

Stopband: −𝜔𝑎  <  𝜔 <  −𝜔𝑏  

Passband: 𝜔𝑏  <  𝜔 <  𝜔𝑎 

Restriction:  
𝜔𝑎

𝜔𝑏
<  𝛿.    Here 𝛿 = 12.63556 .   

Choose values of R1, R2, C1 and C2 to make |𝐺2(𝑗𝜔)| 

very flat in the passband. 

Proposed Design Algorithm 

Choose values of R1, R2, C1 and C2 as follows: 

1

𝑅1𝐶1
= 𝜔𝑎,

1

𝑅2𝐶2
= 𝜔𝑏 ,

1

𝑅2𝐶1
=

−𝛽+√𝛽2−4𝛼𝛾

2𝛼
        (2) 

or 

1

𝑅1𝐶1
= 𝜔𝑏 ,

1

𝑅2𝐶2
= 𝜔𝑎,

1

𝑅2𝐶1
=

−𝛽+√𝛽2−4𝛼𝛾

2𝛼
.        (3) 

Here  

𝛼 ∶=  6𝜔1
2 + 6𝜔2

2 + 4𝜔1𝜔2 − 8√𝜔1𝜔2(𝜔1  +  𝜔2)           (4)   

 𝛽 ∶=  6𝜔1
3 + 6𝜔2

3 + 10𝜔1𝜔2(𝜔1 + 𝜔2)  

− 8√𝜔1𝜔2(𝜔1  +  𝜔2)2                          (5)  

𝛾 ∶=  𝜔1
4 +  𝜔2

4  +  2𝜔1𝜔2(𝜔1
2  +  𝜔2

2  +  5𝜔1𝜔2)

−  4√𝜔1𝜔2(𝜔1
3  +  𝜔1

2𝜔2 +  𝜔1𝜔2
2 ). (6) 

The number of parameters (R1, R2, C1 and C2) is 4 while 

the number of their constraint equations (eq.(2) or eq.(3)) 

is 3. So the designer can add one more constraint arbi-

trarily, for example, by considering their physical im-

plementation.  

Now we will explain why the proposed algorithm 

can make the passband gain flat. Note that the transfer 

function of the 2nd-order filter is given by eq.(1), and its 

gain and phase are given as follows: 

|𝐺2(𝑗𝜔)|  =  √𝑋2(𝑗𝜔)2  +  𝑌2(𝑗𝜔)2 

=
|1 +

𝜔

𝜔1
||1 +

𝜔

𝜔2
|

√(1 −
𝜔2

𝜔1𝜔2
)

2

 + 𝜔2 (
1

𝜔1
+

1

𝜔2
+

2

𝜔12
)

2

. (7) 

tan ∠ 𝐺2(𝑗𝜔)  =  𝑋2(𝑗𝜔)/𝑌2(𝑗𝜔) 

=
𝜔 (

1
𝜔1

+
1

𝜔2
+

2
𝜔12

)

𝜔2/(𝜔1𝜔2) −  1 
 

Here 𝐺2(𝑗𝜔) ∶=  𝑋2(𝜔)  +  𝑗𝑌2(𝜔). 

𝑋2(𝜔): =
(1 +

𝜔
𝜔1

) (1 +
𝜔
𝜔2

) (1 −
𝜔2

𝜔1𝜔2
)

(1 −
𝜔2

𝜔1𝜔2
)

2

+ 𝜔2 (
1

𝜔1
+

1
𝜔1

+
2

𝜔12
)

2
  

𝑌2(𝜔) ∶= −
𝜔 (1 +

𝜔
𝜔1

) (1 +
𝜔
𝜔2

) (
1

𝜔1
+

1
𝜔2

+
2

𝜔12
)

(1 −
𝜔2

𝜔1𝜔2
)

2

+ 𝜔2 (
1

𝜔1
+

1
𝜔1

+
2

𝜔12
)

2

 

. 

We plot the Nyquist chart of 𝐺2(𝑗𝜔) in Fig.3 (a), 

and we have found the followings: 

(i) The Nyquist chart of 𝐺2(𝑗𝜔) is symmetric with 

respect to Y-axis. 

(ii) tan  ∠𝐺2(−𝑗√𝜔1𝜔2)  =  tan∠ 𝐺2(𝑗√𝜔1𝜔2)  =  −
𝜋

2
 

(iii) tan ∠ 𝐺2(𝑗𝜔1)  =  −tan ∠ 𝐺2(𝑗𝜔2) 

Its characteristics is shown also in Table I. 

  

(a) 

 

(b) 

Fig.3: Nyquist chart of a 2nd-order RC polyphase filter. 

(a) Nyquist chart of  𝐺2(𝑗𝜔). (b)  Characteristics of 

𝐺2(𝑗𝜔)  Nyquist chart. We see that |𝐺2(𝑗𝜔1)|  =

 |𝐺2(𝑗𝜔2)| , and 𝐺2(𝑗√𝜔1𝜔2) has only imaginary part 

and no real part. 𝐺2(𝑗𝜔) parts from 𝜔1 to √𝜔1𝜔2 and 

from √𝜔1𝜔2 to 𝜔2  are symmetric with respect to 

 𝐺2(𝑗√𝜔1𝜔2) . (Note that 𝐺2(𝑗𝜔)  from 𝜔1  to 𝜔2 

represents the passband.) 



Table 1: Characteristics of |𝐺2(𝑗𝜔)|. 

𝜔 𝑋2(𝜔) 𝑌2(𝜔) |𝐺2(𝑗𝜔)| 

−∞ −1.0 0.0 1.0 

−𝜔1 0.0 0.0 0.0 

−𝜔2 0.0 0.0 0.0 

−√𝜔1𝜔2  0.0 −p p 

0.0 1.0 0.0 1.0 

√𝜔1𝜔2  0.0 −q q 

𝜔1 r s t 
𝜔2 −r s t 

∞ −1.0 0.0 1.0 

p ∶=
(√𝜔1 −√𝜔2)2

𝜔1+ 𝜔2 + 2𝜔21
,   q ∶=

(√𝜔1 +√𝜔2)2

𝜔1+ 𝜔2 + 2𝜔21
 

r ∶=
(𝜔1  +  𝜔2)(−𝜔1  +  𝜔2)

𝜔1
2 +  𝜔1𝜔2  +  𝜔2

2  +  𝜔12(𝜔1  +  𝜔2  +  𝜔12) 
,  

s ∶=  −
(𝜔1  +  𝜔2)(𝜔1  +  𝜔2  +  2𝜔12)

𝜔1
2 +  𝜔1𝜔2  +  𝜔2

2  +  𝜔12(𝜔1  +  𝜔2  +  𝜔12)
,  

t ∶=
√2(𝜔1  +  𝜔2)

√𝜔1
2 + 𝜔2

2  +  2𝜔21(𝜔1  +  𝜔2  +  𝜔21)
 . 

It follows from eq.(7) that 

|𝐺2(𝑗𝜔1)|  =  |𝐺2(𝑗𝜔2)|.                (8) 

We propose the following condition to make the gain 

flat in the passband. For given ω1 and ω2, choose ω21 := 

1/(R2C1) such that 

|𝐺2(𝑗𝜔1)|(=  |𝐺2(𝑗𝜔2)|)  =  |𝐺2(𝑗√𝜔1𝜔2)|.         (9) 

 It follows from eq.(8) that the gain is the same at 

𝜔1, 𝜔2 which are terminals of the passband (Fig.3 

(b)). Also we see from Fig.3 (a), (b) that 𝐺(𝑗𝜔) is 

symmetric with respect to Y-axis for 𝜔1  < 𝜔 <

√𝜔1𝜔2 and √𝜔1𝜔2 < 𝜔 < 𝜔2 . Then it is expected 

from Fig.3 (b) that |𝐺(𝑗𝜔)|would be almost constant 

for 𝜔1  ≤  𝜔 ≤  𝜔2. 

Now let us solve eq. (9); 

|𝐺2(𝑗√𝜔1𝜔2)|  =
(√𝜔1  + √𝜔2)2

𝜔1 + 𝜔2  +  2𝜔21
  . 

Then we have a quadratic equation for 𝜔21 

𝛼𝜔21
2  +  𝛽𝜔21  +  𝛾 =  0.                 

Here 𝛼, 𝛽, 𝛾 are defined in eqs.(4), (5), (6).  

Since  

𝛼 ≥   2(𝜔1  − 𝜔2)2 > 0, 

𝛽 ≥  2(𝜔1  − 𝜔2)2(𝜔1  + 𝜔2) > 0, 

then, if 𝛾 <  0, a positive real solution is given by  

(𝜔21)+  =
−𝛽 + √𝛽2  − 4𝛼𝛾

2𝛼
        

We investigate the sign of γ which depends on the 

values of 𝜔1, 𝜔2 using numerical calculation. 

Define 𝑓(𝑐) ∶=  𝛾/𝜔2
4, and we have 

f(c) = c4  +  1 +  2c(c2  +  5c +  1) 

− 4√c(c3  +  c2  +  c +  1) 

Here 𝑐 ∶=
𝜔1

𝜔2
. Fig. 4 shows the plot of f(𝑐) , and 

we found from Fig.4 that the condition of 𝑓(𝑐)  <  0 

(i.e, 𝛾 <  0) is as follows: 

1/𝛿 <  𝜔1/𝜔2  <  𝛿.       (10) 

Note that 1/𝛿 = 0.079142. . . . , 𝛿 = 12.63556. . ..  

Under this condition, we have a positive real solution 

of eq. (10) as follows: 

𝜔21  =
 −𝛽 +√𝛽2−4𝛼𝛾

2𝛼
 .         

The proposed algorithm provides 3 restrictions to 4 

parameters of 𝑅1, 𝐶1, 𝑅2, 𝐶2, and then one freedom is 

left for the designer. 

 

(a)                 (b) 

Fig.4 : f(c) characteristics. (a) 0<c<1.5. (b) 0<c<13. 

𝑓(𝑐)  <  0 when 0.079142. . <  𝑐 <  12.63556. . ..   

 

4. Numerical Simulation for Proposed Algorithm  

We have performed numerical simulations with sever-

al examples to demonstrate the effectiveness of the 

proposed algorithm. The values of  𝜔1, 𝜔2  are the 

same as in Fig.2, and we have obtained 𝜔21 = 10.44 

using the proposed algorithm and its gain characteris-

tics is shown in Fig.5; we see that the gain in Fig.5 is 

flat compared to the one in Fig.2 (a) in the 

band (1 .0 <  𝜔 <  7.58) . 

Fig.6 shows the gain characteristics for several val-

ues of 𝜔21 with the same 𝜔1, 𝜔2 in Fig.2. We see 



that the gain is the most flat for 𝜔21  =  10.44 which 

is obtained by the proposed method. 

Fig.7 shows the gain characteristics for 2 cases 

of 𝜔1, 𝜔2 using the values of 𝜔21 obtained by the 

proposed algorithm and we see that in both cases, the 

gain is flat. 

 

(a)                     (b) 

Fig.5: (a) Gain characteristics of a 2nd-order RC polyphase 

filter with ω1  =  1.0, ω2  =  7.58, ω21  =  10.44. The value 

0.44 of ω21 is derived by our proposed algorithm. (b) Gain 

characteristics in the passband of a 2nd-order RC polyphase 

filter with ω1 = 1.0, ω2 =7.58, ω21 = 10.44. 

 

Fig.6: Gain characteristics in the passband of 2nd-order RC 

polyphase filters with ω1 = 1.0, ω2 =7.58. From the top to the 

bottom lines, ω21 =45, 10.44, 3.73, 2.55, 1.92. 

  

(a)                  (b) 

Fig.7 : Gain characteristics in the passband (ω1 < ω <ω2) of 

2nd-order RC polyphase filters. Each value of ω21 is derived by 

our proposed algorithm. (a) In case of ω1 = 1.0, ω2 = 3.58, ω21 

= 2.58. (b) In case of ω1 = 1.0, ω2 = 7.58, ω21 = 10.44. 

 

5.  Image Rejection Ratio 

We define Image Rejection Ratio (IIR) for the 

2
nd

-order RC polyphase filter as follows: 

IRR ∶= 20 log10
Gain in passband

Ripple in stopband
 [dB] 

When the proposed algorithm is used, the gain in 

the passband is given by 

|𝐺2(𝑗𝜔)|𝜔𝑏<𝜔<𝜔𝑎
≈  |𝐺2(𝑗√𝜔1𝜔2)|. 

Fig.3 shows that ripple in stopband is given by  

max−𝜔𝑎<𝜔<−𝜔𝑏
|𝐺2(𝑗𝜔)|  =  |𝐺2(−𝑗√𝜔1𝜔2)|. 

In case the proposed algorithm is used, we have  

IRR = 20 log10

|𝐺2(𝑗√𝜔1𝜔2)|

|𝐺2(−𝑗√𝜔1𝜔2)|
 

= 20 log10

(√𝜔1  + √𝜔2)2

(√𝜔1  − √𝜔2)2
 [dB]. 

The ratio of 𝜔1 / 𝜔2 must be close to one, in order to 

make IIR lager, and then the condition for 𝛾 < 0 is 

not severe. 

6. Conclusion 

In this paper, we have shown an explicit design algo-

rithm for flat passband gain of 2
nd

-order RC poly-

phase filters and demonstrated its effectiveness using 

several numerical examples. We have shown an ex-

plicit condition for its solution to exist, and also an 

explicit image rejection ratio when our algorithm is 

employed. 

 As a future project, we intend to extend this method 

to higher order RC polyphase filters. 
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