Fusion of Biology, Brain Science and Information Communication Technology

Haruo Kobayashi¹⁾, Tomoaki Shirao²⁾, Jun Horikoshi³⁾, Kazuyuki Imamura⁴⁾, Nobuyoshi Ishikawa¹⁾, Nobukazu Tsukiji¹⁾, Yutaro Kobayashi¹⁾, Takuya Arafune¹⁾ ¹⁾ Division of Electronics and Informatics, Gunma University²⁾ Graduate School of Medicine, Gunma University ³⁾ NPO Wireless Brain Network⁴⁾ Maebashi Institute of Technology

Researc	h B	Bac	kgroun	d	and	Go	al

Background		Goal	Research subjects		
Treating method of sever Development of new BMI	e mental disorder (Brain Machine Interface)	Development of device obtaining minute signals	 Reliable ADC System requirement 	 Power supply circuit Implementation 	
Deep research of	axon of previous neuron neuron cell body uncleus synapse dendrites	Anomaly Sudden rise Monardy Sudden rise Metatt rate Image: Control Check Fail Nealth status Diagnosis by from data Feedback Internet Receive body	Multi-channel Carrier LNA, LPF,HPF,AD/DA, (electrode/ tetrode) (gital demodulator (controller)	Transmitter	

neural signal and synaptic signal

is needed !

Future application of synapse informatics

System configuration for realizing synapse informatics

Reliable ADC Design

SAR ADC using redundancy

Property converging to "Golden ratio"

Realize radix 1.62 weight by using only integers

Effectiveness of this method

 Step
 1st
 2nd
 3rd
 4th
 5th
 6th
 7th

 Weight p(k)
 16
 8
 5
 3
 2
 1
 1
 Discovered properties of this method!!

High efficiency

- Previous work
 - To confirm simulation result of basic SIDO converter operation using ZVS-PWM control

• This work

– To implement ZVS-PWM control into SISO boost converter

Comparison of switching waveforms

EMI reduction

Conventional method

Improvement of Power Supply Circuits

Generation of continuous-pattern spectrum by analog modulation

Proposed method

Effectiveness verification with simulation

Feedback signal spectrum

Drebrins gather at synapse 2.

System requirement consideration

3. Degrees of gliosis are few

Relevant patents at above research

Patent: 2014-164695 (IP26-015) Inventor : T. Shirao, Y. Ishizuka, H. Yamazaki Development name : Specific quantification methods of Drebrin A and Drebrin E (1)Acquisition and transmission of

electroencephalogram signal (EEG sensor ⁽²⁾Monitoring

Realize transmission at distance over dozens of meters !

Prototype transmission device (with EGG sensor probe)

- Characterization of neural and synaptic signals

– Program development to extract features

– Extraction of changing pattern around electrode

• Design and prototype of data transmission

-Neural signal acquisition

-More small-scale transmission device realization