Research Background and Goal

Background
- Treating method of severe mental disorder
- Development of new BMI (Brain Machine Interface)
- Deep research of neural signal and synaptic signal is needed!

Goal
- Development of device obtaining minute signals

Research subjects
- Reliable ADC
- System requirement
- Power supply circuit
- Implementation

Reliable ADC Design

SAR ADC using redundancy

- **Proposed solution**
 - Using Fibonacci sequence for p(k): \(p(k) = F_{n+1} \)
- Binary weight: \(64, 32, 16, 8, 4, 2, 1 \)
- Radix 1.8 weight: \(34.0, 18.9, 10.5, 5.8, 3.2, 1.8, 1 \)
- Radix 1.62 weight (Radix 1.62 weight)
- Property converging to “Golden ratio”
- Realize radix 1.62 weight by using only integers!

Effective ADCs in incompletely settling

- Advantage of DAC
-\[
 \text{ADC settling time} = \frac{1}{2} \left(\frac{V_{ref}}{2^N} \right) \left(1 + \frac{2^N}{2^N - 1} \right)
\]
- Fibonacci SAR ADC is faster than radix SAR ADC!

High efficiency

- **Previous work**
 - To confirm simulation result of basic SIDO converter operation using ZVS-PWM control
- **This work**
 - To implement ZVS-PWM control into SISO boost converter

Comparison of switching waveforms

- Boost SISO without ZVS
 - Power loss: \(P_{sw} = 102mV \)
 - Switching loss: \(P_{sw} = \frac{2}{3} \cdot V \cdot I \cdot \Delta t \)
- Boost SISO with ZVS
 - Power loss: \(P_{sw} = 16mV \)
 - 64% reduction

Future Works

- Reliable ADC
 - Verification with actual equipment
- **System requirement**
 - High-efficiency noise guard
 - Analysis of notch characteristic
 - ZVS-PWM control implementation into SIDO boost-boost converter
- **System requirement consideration**
 - Characterization of neural and synaptic signals
 - Program development to extract features
 - Extraction of changing pattern around electrode
- **Design and prototype of data transmission**
 - Neural signal acquisition
 - More small-scale transmission device realization

System Requirement

- Fusion of biology, brain science and electronics
- To get beneficial information from activity change of neurons and synapses nearby a probe
- System requires as following:
 1. Measurement of activity voltage at synapse
 2. Drebrins gather at synapse
 3. Degrees of gliosis are few

Transmission Device

- Transmission experiment of prototype device
- Develop sub-system to realize coding/decoding signal transmission and communication

Future Works

- Our challenge is underway