複素ΔΣ変調器による高周波信号生成方式の検討

◎村上正紘 小林春夫(群馬大学)

Kobayashi Lab. Gunma University

OUTLINE

検素マルチバンドパス ΔΣ DA 変調器

トアップコンバージョン

OUTLINE

検素マルチバンドパス ΔΣ DA 変調器

トアップコンバージョン

研究背景

低コスト かつ 高品質テスト の要求

5 /40 テスト対象のアプリケーション

受信機

6 /40 テスト対象のアプリケーション

受信機

I信号,Q信号:互いに位相が90°異なる信号

研究目的

I,Q信号生成法

① アナログ手法

② デジタル手法(1)

③ デジタル手法(2)

① アナログ手法

高サンプリング周波数・高分解能のDAC

急峻なアナログフィルタ

②デジタル手法(1)

②デジタル手法(1)~出カパワー~

 $\omega_s/2$

 $-\omega_s/2$

②デジタル手法(1)~信号帯域~

13/40 ②デジタル手法(2)~複素信号処理

SNDRの比較~なぜ複素を用いるのか~14/40

◇ 高品質な I,Q 信号

Complex signal processing is NOT complex. (K.Martin)

16/40 高性能化へのアプローチ まとめ

w/o ΔΣ

OUTLINE

・ 複素マルチバンドパス ΔΣ DA 変調器

アップコンバージョン

複素バンドパスΔΣDACの構成

2次複素マルチバンドパスデルタシグマDAC

NTFのゼロ点の位置(信号帯域)

	COMPLEX	N=1				1/4	
ω = 0に対して非対称		N=2	-3/8		1/8		
		N=3	-3/	/12	1/12	5/1	12
		N=4	-7/16	-3/16	1/16	5/16	
		-1	/2		0 ω _{in} /(ີ ປs 1	/2

NTFのゼロ点の位置(信号帯域)

					,			
	COMPLEX		N=1			1	/4	
			N=2	-3/8		1/8		
ω = 0に対して非対称		N=3	-3/	12	1/12	5/-	12	
		N=4	-7/16	-3/16	1/16	5/16		
		-1/2 0) 1/2		/2		
	REAL		N=1		(0	- - - - - - -	
			N=2		(Φ	1	1/2
DCにゼロ点(ノッヲ			N=3	-1/3	(φ	1/3	
			N=4	-1	/4	0 1.	/4 1	1/2
	LowPa	ass	N=1				1	1/2
			N=2	-1	/4	1	/4	
			N=3		-1/6	1/6	1	1/2
			N 4	0./0	1/0	1/0	0/0	
			N=4	-3/8	-1/8	1/8	3/8	
	High P	ass	$-1/2$ 0 1/2 ω_{in} / ω_s				1/2	

相互変調ひずみ(IMD)の測定

入力周波数 $f_1 \approx f_2$ のとき 3次IMD成分が信号帯域に入り込む

評価のために

OUTLINE

> 複素マルチバンドパス ΔΣ DA 変調器

アップコンバージョン

まとめ

25/40テスト対象アプリケーションの拡張

生成したIQ信号 → アップコンバージョン ↓ アプリケーションの幅はさらに広がる

被アップコンバージョンの波

26/40

サンプリング周波数f_s: 2¹⁰ cos(sin)波周波数f_{in}:257 ← fs/4に近い素数 サンプル数n: 2¹⁰

デジタル値の補間 8clk-Hold

DACの出力波形~0次ホールド~

 $(T_p=1/f_s)$

0次ホールドに近づけるために補間をする (ホールドする点数は多いほどよい)

29/40 DACの出力スペクトル~イメージの発生~

(Tp=1/fs)

30/40 DACの出力スペクトル~イメージの発生~

(Tp=1/fs)

フィルタの挿入

キャリア波の生成 f_s→8f_s

サンプリング周波数f_s : 2¹⁰ cos(sin)波周波数f_c : 10⁵ - 1 = 99999 サンプル数n : 2¹⁰

 $\cos \omega_{c} (n) = \cos(2^{*}\pi^{*}(f_{c}/(8^{*}f_{s}))^{*}n)$ $\sin \omega_{c} (n) = \sin(2^{*}\pi^{*}(f_{c}/(8^{*}f_{s}))^{*}n)$

33/40 アップコンバージョン後の周波数

アップコンバージョン後の周波数 fup

 $f_{up} \equiv f_c - f_{in} = 999999 - 257 = 99742$

シミュレーション結果 ~パワースペクトラム~^{34/40}

シミュレーション結果 ~⑨最終出力パワースペクトラム~

シミュレーション結果 ~⑨最終出力パワースペクトラム~

37/40 シミュレーション結果 ~ ⑨最終出力パワースペクトラム~

^{38/40} シミュレーション結果 ~9最終出力パワースペクトラム~

被アップコンバージョンの信号が Realデルタシグマ変調されたものとの比較

OUTLINE

検索マルチバンドパス ΔΣ DA 変調器

アップコンバージョン

まとめ

- 通信用ICのテストのために、デジタル技術を利用した、 I,Q信号生成法を提案
- 検索マルチバンドパス ΔΣ DAC
- アップコンバージョン

多くのアプリケーションに対応した 低コスト・高品質な信号生成を実現

A & **D**

里周二先生(宇都宮大学)

なぜ複素はゼロ点が半分に減るの?

→ 計算すればわかるが、簡単にいえばREALでは0としている 虚数部も考慮していて、同一帯域で情報が2倍になるから。

清水 隆志先生(宇都宮大学)

どのくらいの高周波まで使えるの?

- → アプリケーションによるが、 複素デルタシグマ変調ではMHzオーダー、 アップコンバージョンしてGHzオーダーを想定している。
 - → ミリ波(30~300GHz)までできる?

→ アップコンバージョンはできるかもしれないが、 アナログフィルタが難しいかも。