スイッチング電源における ノッチ特性を有するスペクトラム拡散

Spread Spectrum with Notch Frequency for Switching Converter

小山工業高等専門学校 専攻科 2年 深谷 太詞

目次

研究背景・目的 アナログノイズによるスペクトラム拡散 構成 シミュレーション結果

- 3. パルスコーディング方式電源の検討
 - パルス幅コーディングPWC方式によるノッチ特性
 - PWC方式スイッチング電源の構成
- 4. シミュレーション結果
 - PWC方式のシミュレーション
 - PWC方式+EMI拡散のシミュレーション
- 5. 実装確認
- 6. まとめ・今後

PWC: Pulse Width Coding

1.研究背景・目的

• スイッチング電源の特徴

EMI: Electro-Magnetic Interference

1.研究背景・目的

1.研究背景・目的

・従来のEMI低減方法の問題 –無線機器の受信帯域(AM)にノイズを拡散してしまう

的 **受信帯域を避けてノイズを拡散**

2.アナログノイズによるスペクトラム拡散

制御クロックを変動 ⇒スペクトル拡散

2.アナログノイズによるスペクトラム拡散

• アナログノイズ方式の回路構成

frefを中心に周波数をランダムに変調

2.アナログノイズによるスペクトラム拡散

3.パルスコーディング

パルス幅コーディング方式によるノッチ特性

ノッチ生成帯域は、パルスの幅によって決定

3.パルスコーディング

• PWC方式スイッチング電源の構成

10/21

3.パルスコーディング

・パルス生成

3.パルスコーディング

• PWC方式スイッチング電源の構成

誤差電圧に応じ2種のパルスを切り換える

12/21

4.シミュレーション結果

表1:シミュレーション条件

出力電圧	5.0 V
W_H	1.6 µs
W_L	0.3 µs
ノッチ周波数	769 kHz

図8:PWCにおけるスペクトラム

4.シミュレーション結果

• (PWC+EMI拡散) のスペクトラム

パルス幅コーディング方式によるノッチ特性

5.PWC方式実装結果

実測スペクトラム1

表1.			
入力電圧 E	出力電圧 Vo	出力電流 Io	
10 V	5 V	330 mA /530mA	
周期	パルス 幅 t1	パルス幅 t2	
1.67µs	0.40µs	1.46 µs	
L	С	負荷変動周期	
100µH	610µF	0.02ms	

 $f_{notch} = 943 \text{ kHz}$, 1.9MHz ...

5.PWC方式実装結果

・実測スペクトラム2

図13 実測スペクトラム $f_{notch} = 758 \text{ kHz}$, 1.5 MHz, 2.3 MHz ...

条件により高次ノッチのみ確認 ⇒今後解析

5.実装結果

• リップル・過渡応答特性

図14.実装回路による過渡応答特性 (I⊿ = 200mA @500Hz) 図15.実装回路による過渡応答特性 (2.0MHzで帯域制限)

PWM方式と同程度の特性

• まとめ

-実装にて理論式によるノッチの生成を確認

$$f_{notch} = \frac{n}{W_{H} \overline{J}, \overline{J}, \overline{M}, \overline{M},$$

-スペクトラム拡散を適用

- •-10dBV のピークレベル低減かつ、ノッチ生成
- ノッチ内の線スペクトラム低減

今後

- ノッチ生成帯域の高周波化(FM対応)
- 深いノッチの生成条件の解明
- -実装回路へのEMI拡散適用
- クロックレス電源への適用検討

目次

- 1. 研究背景・目的
- 2. 提案手法
 - アナログノイズによるスペクトラム拡散
 ノッチ生成方式

 PWC
 PCC
 - 3. PWCC
- 3. シミュレーション結果
- 4. まとめ・今後

Appendix

• EMI規制

CISPR(国際無線障害特別委員会) 22/EN55022の限度値

日本でもVCCIとして自主規制されている。

Appendix

• PLLフィルタ特性がノッチに与える影響

28KHz

7.234KHz

カットオフ周波数	Vrip-p	ノッチ
7.234KHz	8.99mV	生成されたが不十分でピークが目立つ
28KHz	10.04mV	生成された

App.PWMコーディング回路(動作1)

App.PWMコーディング回路(動作2)

App.PWMコーディング回路(動作3)

2.1パルスコーディング方式

27/21