フィボナッチ数列重み付け逐次比較近似 ADC と 単峰関数の黄金分割探索法との関係

新井 宏崇[†] 小林 佑太朗 小林 春夫[‡]

群馬大学大学院 理工学府電子情報部門 〒376-8515 群馬県桐生市天神町 1-5-1 E-mail: †t13304006@gunma-u.ac.jp, ‡koba@gunma-u.ac.jp

あらまし この論文では、「フィボナッチ数列重みづけ (約 1.62 進) 逐次比較近似 AD 変換器(SAR ADC)は、入 力電圧と内部 DA 変換器の出力電圧の差の絶対値をとった単峰関数に黄金分割探索法を適用した SAR ADC と等価 である」ということを示す。黄金分割探索法は黄金比 (約 1.62)を用いて単峰関数の極値を近似的に求める方法で あるが、それに基づく直接的な SAR ADC 構成は、コンパレータおよび DAC が各 2 つ必要となる。その構成を工夫 しコンパレータと DAC を 1 つずつ使用する回路量を低減した改良構成を考案し、それがフィボナッチ数列重みづ け SAR ADC と等価であることを構成・動作の説明とシミュレーションで示した。

キーワード 黄金分割探索法,逐次比較近似 AD 変換器、フィボナッチ数列,黄金比、冗長性

Fibonacci Sequence Weighted SAR ADC as Golden Section Search of Unimodal Function

Hirotaka ARAI Yutaro KOBAYASHI and Haruo KOBAYASHI

Division of Electronics and Informatics, Faculty of Science and Engineering, Gunma University

1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515 Japan

Abstract This paper presents the equivalence between the Fibonacci sequence weighted SAR ADC and the SAR ADC based on the golden section search algorithm using the unimodal function obtained by the absolute value of the difference between the input voltage and the output of the internal DAC. The golden section search is used for finding effectively the extreme value of the unimodal function. When this golden section search is implemented directly with an SAR ADC, it needs two comparators and two internal DACs. However we come up with simplifying it using only one comparator and one DAC, and we show that this is equivalent to the Fibonacci sequence weighted SAR ADC. We explain their principle, configuration, and operation as well as some simulation results.

Keywords Golden Section Search, SAR ADC, Fibonacci Sequence, Golden Ratio, Redundancy

1. はじめに

車載用エレクトロニクス技術は自動車に付加価値 や競争力を生む一つの方法として注目を集めている。 車載用マイコンと組み合わせて使用される AD 変換器 には分解能、消費電力、チップ面積の面で優れた逐次 比較型 ADC が広く使用される。そして車載用エレク トロニクスの発展に伴い、その逐次比較近似 AD 変換 器への性能要求が厳しくなっている。

そこで筆者らはこの逐次比較近似 ADC のアルゴリ ズムの研究を行っている。高信頼性・高速性を実現す るために冗長アルゴリズムを用いた逐次比較近似 AD 変換器(SAR ADC)としてフィボナッチ数列重み付け を用いる方式を検討し、その様々な優れた性質を明ら かにしてきた。[[1-9] 本論文では単峰性関数の極値を 求めるアルゴリズムである"黄金分割探索法"を、入 力電圧と内部 DAC の出力の差の絶対値をとった単峰 関数に適用したアルゴリズムに基づく SAR ADC とフ ィボナッチ数列重み付け SAR ADC が一致することを 示す。

2. 逐次比較近似 ADC の構成と動作

SAR ADC は高分解能(8~18bit 程度)、中速サンプリ ング(5-20MSps 程度)の AD 変換器である。低消費電力 かつ小チップ面積であるという特徴から、自動車や工 業用機械などで広く用いられている。またオペアンプ を使用しない回路構成であるため微細 CMOS での実現 に適する方式である。

SAR AD 変換器の構成要素は図1のようにサンプル &ホールド回路、DA 変換器(DAC)、コンパレータ、逐 次比較レジスタ(SAR) ロジック回路、クロック発生回路の5つである。正確な変換のためには、サンプル&ホールド回路とDA変換器に精度が必要である。

SAR AD 変換器の動作は"天秤の原理"を用いるも ので、一般には二進探索アルゴリズムを適用する。サ ンプル&ホールド回路でアナログ入力を保持し、コン パレータ(天秤)によって DA 変換器出力電圧(錘)と比 較し、これら二入力の大小比較結果から出力ディジタ ル値の1ビット分を決定する。続けて前ステップの比 較結果によって SAR ロジック回路を動作させて比較 電圧の大きさを決定し、DA 変換器を通してアナログ 信号に変換する。このようにして変更された比較電圧 とサンプル&ホールド回路からの入力電圧とを一回目 と同様に比較する。これらの比較操作と比較電圧変更 操作を繰り返してアナログ信号をディジタル信号へ変 換する方式が SAR AD 変換器である。

図2に二進探索アルゴリズム4bit逐次比較近似AD 変換器の具体的な解探索動作図を示す。図2における 太線の部分が各ステップでの比較電圧の大きさであり、 これらの値と入力電圧値を逐次比較することで最終デ ィジタル値を得る。比較電圧より入力アナログ電圧値 が大きければコンパレータは1を、逆であれば0を出 力する。一般的に比較電圧の大きさは、二進重みの加 減算から構成される数字を使って比較しており、時間 (ステップ数)的に無駄がなく効率は一番良い。

しかしながら二進重みづけ SAR ADC は一度比較誤 りがあると正しいディジタル出力値が得られないので、 冗長アリゴリズムを用いることを研究してきている。

Fig. 1. Block diagram of an SAR ADC

3. 黄金分割法とフィボナッチ探索法 3.1. 黄金分割法

黄金分割法は、単峰関数の極値を効率的に求める際の探索アルゴリズムである(図 3)。 関数の極値が存在 する区間を定めると、区間内の二点の関数値を比較す ることができれば、極値の存在する区間を縮小してい くことで極値を求められる。区間を一定の比率で無限 に分割する方法を考えると区間を

X:1=1:X-1 $tabb = X^2 - X - 1 = 0$

を満たすように分割する。このXは黄金比(=1.61803…) となるため、この極値探索アルゴリズムは黄金分割法 と呼ばれる。

図 2.4-bit SAR ADC の二進探索アルゴリズム Fig.2 Binary search algorithm of a 4-bit SAR ADC.

and Fibonacci search algorithm.

黄金分割法の極値探索を図3に示す。図3で薄青塗 の部分が極値の存在範囲と判定する。黄金分割法は一 定の比率で区間を縮小するため収束性が保証され、測 定回数が限られているとき最も小さい区間に縮小でき ることが証明されている。

3.2. フィボナッチ探索法

黄金分割法は整数区間を小数である黄金比で分割 するために、整数のみを扱う ADC と相性が悪い。そ こで ADC 設計への応用にフィボナッチ探索法の適用 を検討した。フィボナッチ数列とは以下の漸化式で定 義される数列である。[10-11]

$$F_{0} = 0$$

$$F_{1} = 1$$

$$F_{n+2} = F_{n} + F_{n+1} \quad (1)$$

初めの数項を計算すると以下の整数値となる。 0,1,2,3,5,8,13,21,34,55,89,144,233…

また隣り合う項の比率は以下の黄金比に収束する。

$$\lim_{n \to \infty} \frac{F_n}{F_{n-1}} = 1.618033988749895$$
(2)

すなわちフィボナッチ数列において隣り合う項の 和が次の項になり、隣り合う項の比率が黄金比である。

フィボナッチ探索法はこれらの性質を利用し、黄金 分割をフィボナッチ数の並びで置き換える(図 4)。フィ ボナッチ数法は黄金分割法(の近似)を整数で行う方 法であり、黄金分割法を用いた ADC の実現はフィボ ナッチ探索法を用いて設計できると考察した。

4. フィボナッチ数列重み付け SAR ADC

式(1)からフィボナッチ数列は整数のみで構成され る数列である。式(8)から隣り合う項の比率は黄金比の 約1.62になる。別の表現をすると、端数処理がまった く使われていない整数のみで、基数が黄金比である約 1.62進の数列を実現できるということになる。一般に 整数の小数倍は小数となるが、フィボナッチ数列は整 数の小数倍(約1.62倍)が整数となる。整数項で一定比 率を保持できるフィボナッチ数列の性質を用いて SAR ADC の設計を行う。

SAR ADC をフィボナッチ数列重みにするため k ス テップ目での比較電圧重みakの変更を行う。式(3)のよ うに比較電圧重みを小さいほうからフィボナッチ数の 大きさに決定する。

$a_1 = 2^{N-1}$

$a_k = F_{M-k+1} \qquad (3)$

フィボナッチ数列の性質に従えばこの方法で整数のみの約 1.62 進を実現できる。このとき利用する総ステップ数 M は、 従来法と同様に式(4)を満たすように決定する。

$$2^{N-1} - 1 \le \sum_{i=0}^{M-2} p(M-i)$$

(4)

フィボナッチ数列を組み合わせた 4-bit 6-stepの SAR ADC の解探索動作を図 5 に示す。最初のステップは

入力フルスケールの半分を選択し、以降は式(3)にし たがってフィボナッチ数重みで実現している。図 5 で太線が比較電圧である。

図 5.4-bit のフィボナッチ数列重み付け SAR ADC Fig.5 Fibonacci-sequence-weighted 4bit SAR ADC

図 6. 入力電圧と DAC の出力電圧の差の単峰関数 (入力が 2.7 の場合)

Fig.6 Unimodal function of the absolute value of the difference between the input (=2.7) and the DAC output.

図 7. 黄金分割探索法を用いた 4-bit SAR ADC Fig.7 4-bit SAR ADC using golden section search

図 8. 黄金分割探索 4-bit SAR ADC 回路図 Fig8. Block diagram of an SAR ADC based on golden

図 9. 黄金分割探索 SAR ADC 用内部 DAC の構成例 Fig.9 DAC configuration example of the SAR ADC based on golden section search algorithm.

5. 黄金分割探索 SAR ADC

SAR ADC 入力電圧と内部 DAC 出力の差の絶対値を 取ると図 6 のようになる(入力 2.7 の場合である)。これ は極小値を持つ単峰関数であるため 黄金分割法を用 いることができる。黄金分割探索法を用いた 4-bit の AD 変換の解探索を図 7 に示す(入力 10.7 の場合であ る)。図 7 において外側の 2 本の太い実線が解の存在可 能範囲・比較点を表し、破線が入力電圧を示す。

動作は黄金分割法と同様となる。どちらの分割点で 探索範囲を縮小するかをコンパレータが2点の比較電 圧の大きさを比較することにより決定し、入力の存在 可能区間は縮小されていく。フィボナッチ数の性質よ り最後は必ず整数の比較が行われディジタル値へ変換 できる。入力電圧と比較電圧の距離をとり、入力電圧 と下の比較電圧の距離の方が大きい場合には出力コー ドが1、上の比較電圧との距離の方が大きい場合には 出力コードを0とする。

直接的構成の黄金分割探索 4-bit SAR ADC 回路ブロ ックを図 8、その DAC の構成図を図 9 に示す。この回 路は、初めに DAC1 から 0、DAC2 から 20I が電流出力 され、それぞれの加算器で(入力電圧)-(DAC1 の出力) と(DAC2 の出力)-(入力電圧)を計算し、コンパレータ で比較する。コンパレータ出力に応じて DAC1 または DAC2 入力を制御し、アナログ加算器で計算を行う。 解の範囲が 2 つのディジタル値まで絞られるまでこの 動作を繰り返し、出力するディジタル値をコンパレー タの出力が 0 のとき DAC1 の入力、1 のとき(DAC1 の 入力)+1 とする。

6. 回路を軽量化した黄金分割探索 SAR ADC

*V_{in}*を入力電圧、DAC1outを DAC1 の出力、DAC2outを DAC2 の出力とする。現在の比較方法は

 $V_{in} - DAClout \ge DAC2out - V_{in} \tag{5}$

となっている。そこで

 $2V_{in} \ge DAC1out + DAC2out \tag{6}$

```
V_{in} \ge \frac{1}{2} (DAC1out + DAC2out) (7)
```

とすることで、DACが1つと加算器が2つが削減できるため回路が軽量化できる。

回路を軽量化した黄金分割探索を用いた 4bit の AD 変換の解探索を図 10 に示す(入力 10.7 の場合である)。 図 10 において外側の二本の太い実線が解の存在可能 範囲を表し、破線が入力電圧、鎖線が比較電圧である。

動作は軽量化する前とほぼ同じである。ただし、コ ンパレータは入力電圧と解の存在範囲の中間点である 比較電圧を比較し、入力電圧が比較電圧より大きいと 判定したとき1を出力し、小さいと判定したときは0 を出力する。

	<u>数</u>	1st	2nd	3rd	4th	5th
Level	20					
	19					
	18					
	17					
	16					
	15					
	14					
	13					
	12					
	11					
	10					
	9					
	8					
	7					
	6					
	5					
	4					
	3					
	2					
	1					
	Ó					
	-1					

図 10. 回路を軽量化した黄金分割探索 4-bit SAR ADC の解索図

Fig.10 Golden section search algorithm of a revised 4-bit SAR ADC.

図 11. 回路を軽量化した黄金分割探索 4-bit SAR ADC の DAC の構成図

Fig.11 DAC structure in the revised SAR ADC based on the golden section search algorithm.

図 12. さらに回路を軽量化した DAC の構成図 Fig.12 Further simplified DAC structure

この回路を軽量化した黄金分割探索 SAR ADC の回路は、図1の従来の SAR ADC の回路を使用し、DAC の構成にフィボナッチ数列重みづけを使用する。そのDAC の構成図を図 11 に示す。この回路ははじめにスイッチ $S_{L1\sim6}$ を ON にして、全体の半分の電圧である 10I を DAC から出力し、その電圧と入力電圧をコンパレータで比較する。コンパレータの出力が 0 のときは S_L を OFF にし、1 のときは S_R を ON にすることで解の存在範囲を絞っていく。解の存在範囲が 2 つまで絞られたところで、そのときのコンパレータの値が 0 のときは(DACの出力電圧)-1を出力するディジタル値とし、1 のときは DAC の出力電圧を出力するディジタル値とする。

この一連の動作で $S_{L1.2}$ は ON のままであり、 $S_{R1.2}$ は OFF のままである。そのためさらに回路を軽量化でき ると考えられる。その構成図を図 12 に示す。このとき の DAC の動作は前と同様である。

7. 数式での証明・シミュレーション

ここでは k-ステップ目の DAC 出力電圧であり、比 較電圧でもある数列を*a*_kとし、DAC 構成から*a*_kを数式 で表す。この*a*_kとシミュレーションを行った DAC 出力 電圧のグラフを比較し、*a*_kの表現式が正しいことを検 証する。

7.1. 数式での証明

検討している黄金分割探索 SAR ADC がフィボナッ チ数列重み付け SAR ADC と一致することを証明する。 入力電圧をV_{in}とする。フィボナッチ数列は次のように なる。

$$F_0 = 0$$
$$F_1 = 1$$
$$F_{n+2} = F_n + F_{n+1}$$

フィボナッチ数列を最大値から累算を行った数列を次 のようにおく。

(1)

(8)

$$S_1 = F_n$$

$$S_2 = F_n + F_{n-1}$$

$$S_n = F_n + F_{n-1} + \dots + F_1$$

*a*_kは図12より1回目の比較電圧は全体の半分の電流 であるので次のようになる。

$$a_1 = \frac{s_n}{2} \qquad (9)$$

2回目以降の比較電圧を求める。

$$a_{k+1} = a_k - \frac{F_{n-k+1}}{2} \tag{10}$$

 $a_k > V_{in}$ のとき: S_{Rk} が ON のため次式を得る。

$$a_{k+1} = a_k + \frac{F_{n-k+1}}{2} \tag{11}$$

(9)式を用いて(10)式の数列を解くと次式を得る。

$$a_k = \frac{S_n}{2} - \frac{S_k}{2} \qquad (12)$$

同様に(9)式を用いて(11)を解くと次のようになる。

$$a_k = \frac{S_n}{2} + \frac{S_k}{2}$$
 (13)

よって2akは次のように表すことができる

 $2a_k = (F_n + F_{n-1} + \dots + 1) + (\pm F_n \pm F_{n-1} \pm \dots \pm F_{n-n+1})$ (14) (14) 式から得られた, n = 6のときの $2a_k$ の比較電圧 を図 13 に示す。

図 13. $n = 6 \mathcal{O} \geq \mathcal{O} 2a_k \mathcal{O}$ 比較電圧 Fig.13 Comparator input (DAC output) voltage in case of n = 6.

図 13 より2*a_k*の隣り合う値の差フィボナッチ数列となっている。ゆえにこの回路はフィボナッチ数列重み付け SAR ADC と一致することが証明された。

7.2. シミュレーションでの確認

まず(12)式、(13)式が正しいことを示すために、 $V_{in} = 0, S_n$ のときのシミュレーションを行った。

 $①V_{in} = 0$ 、②n = 26とし、 $V_{in} = S_n = 317810$ のときの シミュレーション行った $2a_k$ のグラフを図 14 に示す。

図 14. $V_{in} = 0$, $S_n O ときの比較電圧のグラフ$ Fig.14 Graph of comparator input (DAC output) voltage in case of $V_{in} = 0$, S_n

図 13 よりこのグラフは 0 に収束しており、図 14 よ りこのグラフは $S_n = 317810$ に収束している。これらは 期待通りの動作をしているため、(12)式、(13)式は正し いことがわかる。

図 13 と 14 は(9)式、(10)式、(11)式を用いて実際の SAR ADC の動作を想定して Scilab を用いてシミュレ ーションを行った。

ここでは $V_{in} = 0$ を用いて (12)式を、 $V_{in} = S_n$ を用いて (13)式を検証した。 (12)式は(9)式を用いて(10)式を解 いたものであり、(13)式は(9)式を用いて(11)式を解い たので、(9)式と(10)式、(11)式が検証できたといえる。

黄金分割探索 SAR ADC の比較電圧は1回目は(9)式、 2回目以降は(10)式または(11)式が用いられる。そのた め $V_{in} = 0, S_n 0$ 2 通りのシミュレーションのみで V_{in} が $0 \sim S_n$ のすべての値が期待値に収束する。

例 として ① $V_{in} = (1.2349/2)S_n = 196231.78$ 、 ② $V_{in} = (0.35931/2)S_n = 57096.156$ 、 ③ $V_{in} = (1.7325/2)S_n = 275302.91$ 、 ④ $V_{in} = (0.8469/2)S_n = 134576.64$ のときのシ ミュレーションを行った2 a_k のグラフを図 15 に示す。

- 図 15. V_{in} = (1.2349/2)S_n, (0.35931/2)S_n, (1.7325/2)S_n (0.8469/2)S_nのときの比較電圧のグラフ
- Fig.15 Graph of comparator input (DAC output) voltage in case of $V_{in} =$
- $(1.2349/2)S_n, (0.35931/2)S_n, (1.7325/2)S_n, (0.8469/2)S_n$

図 15 より①は 392462、②は 114192、③は 550604、④ は 269152 に収束しており、意図した値に収束している。

8. まとめ

本論文では、逐次比較近似 ADC で単峰関数の極値 を求めるアルゴリズムである黄金分割法を、入力電圧 と DAC の出力電力の絶対値を取った単峰関数に適用 した構成を検討した。その結果の SAR ADC はフィボ ナッチ数列重み付け SAR ADC と一致することを確認 した。これはこれまで筆者らが研究を行ってきたフィ ボナッチ数列重み付け SAR ADC の興味深い性質の一 つである。

本研究は JSPS 科研費(15K13965)の支援を受けて 行われている。

文 献

- [1] T. Ogawa, H. Kobayashi, Y. Takahashi, N. Takai, M. Hotta, H. San, T. Matsuura, A. Abe, K. Yagi, T. Mori, "SAR ADC Algorithm with Redundancy and Digital Error Correction", IEICE Trans. Fundamentals, vol.E93-A, no.2, (Feb. 2010).
- [2] 小林佑太朗,小林春夫「黄金分割法を用いた SAR ADC 冗長設計」第4回 電気学会 東京支部 栃 木・群馬支所 合同研究発表会,桐生(2014年3月)
- [3] 小林佑太朗,香積正基,楊志翔,小林春夫, "ADC/DAC のフィボナッチ数列を用いた冗長性 設計の検討",電気学会電子回路研究会,奈良 (2013年10月).
- [4] 小林佑太朗、小林春夫 「逐次比較近似 ADC の 整数論に基づく冗長アルゴリズム設計」電気学会 電子回路研究会,島根 (2014 年 7 月)
- [5] Y. Kobayashi, H. Kobayashi, "SAR ADC Algorithm with Redundancy Based on Fibonacci Sequence", 17th International Conference on Analog VLSI Circuits, Ho Chi Minh City, Vietnam (Oct. 2014)
- [6] Y. Kobayashi, H. Kobayashi, "Redundant SAR ADC Algorithm Based on Fibonacci Sequence", Advanced Micro-Device Engineering VI, Key Engineering Materials, pp. 117-126 (2016).
- [7] Y. Kobayashi, S. Shibuya, T. Arafune, S. Sasaki, H. Kobayashi, "SAR ADC Design Using Golden Ratio Weight Algorithm", The 15th International Symposium on Communications and Information Technologies, Nara, Japan (Oct. 2015).
- [8] T. Arafune, Y. Kobayashi, S. Shibuya, H. Kobayashi, "Fibonacci Sequence Weighted SAR ADC Algorithm and its DAC Topology", IEEE 11th International Conference on ASIC, Chengdu, China (Nov. 2015).
- [9] H. Kobayashi, H. Lin, "Analog/Mixed-Signal Circuit Design based on Mathematics", IEEE 13th International Conference on Solid-State and Integrated Circuit Technology, Hangzhou, China (Oct. 2016).
- [10] 中村滋(著):「フィボナッチ数の小宇宙」,日本評論社(2002年9月).
- [11] A. S. Posamentier, I. Lehmann (著), 松浦俊輔 (訳): 「不思議な数列フィボナッチの秘密」, 日経 BP 社 (2010 年 8 月).