

高速入出カインターフェース回路ジッタ耐性試験用の ジッタ生成回路の検討

<u>荒船拓也</u>小澤祐喜 塩田良治[†] 畠山一実 小林春夫 群馬大学 電子情報部門 †株式会社ソシオネクスト

2016/12/15

研究背景

クロックの高周波化やデータ転送速度の高速化

ジッタの種類

◆Phase Jitter > クロックの理想立ち上がりポイントからのずれ

◆Period Jitter
> クロックの理想周期との誤差

Long Term Jitter

▶ あるクロックサイクルから一定時間離れた時点での別の サイクルまでのPeriod Jitter

アウトライン

4/34

◆ジッタ試験回路の提案
 ▶ ΔΣ変調器
 ▶ 提案ジッタ試験回路

◆ジッタ生成の高精度化
 > マルチビット化
 > 移動平均法

◆回路シミュレータによる検証

アウトライン

5/34

◆ジッタ生成の高精度化
 > マルチビット化
 > 移動平均法

◆回路シミュレータによる検証

ΔΣ変調器(変換原理)

- ➢ 小bit数変換
- ▶ 高性能変換

▶ 回路規模が小
 ▶ ノイズシェーピング

◆ パルス密度

入力信号振幅:大 ⇒ Highの割合多 入力信号振幅:小 ⇒ Lowの割合多

➢ 小bit数変換
 ➢ 高性能変換

▶ 回路規模が小
 ▶ ノイズシェーピング

◆ パルス密度

入力信号振幅:大 ⇒ Highの割合多 入力信号振幅:小 ⇒ Lowの割合多

<u>デジタルΔΣ変調器</u>

オーバーサンプリング技術

高精度化の条件 ΔΣ変調器は1つの入力値を 複数の出力値で表現 1つのジッタを生成するために 多くのサンプリングが必要 パルス1周期分抽出 低速度であるが小bitで高精度変換 V_{AC} 最小時間分解能 τ 与えるジッタの分解能 \succ $J_{step}\tau$ ΔΣ変調器の出力 ΔΣ変調器の駆動クロックの1周期と等価量 \geq パルス1周期中の駆動クロック数J_{step} ▶ この数値に応じてパルスの基準幅が概ね決定 V_D ▶ 変換精度の指標 ジッタを含むパルス

アウトライン

9/34

◆ジッタ生成の高精度化
 >マルチビット化
 >移動平均法

◆回路シミュレータによる検証

提案ジッタ耐久試験回路

ΔΣ変調器+簡易アナログ回路⇒小規模ジッタ生成回路

①ΔΣ変調器はディジタルで構成できるため、ソフトウェア上で実現
 ②電流源列の1電流源はDC成分とし、ΔΣの出力に非依存
 ③出力を帰還することで無駄な消費電力を抑制

帰還部なしの動作

①ΔΣ変調器はディジタルで構成できるため、ソフトウェア上で実現
 ②電流源列の1電流源はDC成分とし、ΔΣの出力に非依存
 ③出力を帰還することで無駄な消費電力を抑制

容量電流 I_{AC} \rightarrow \rightarrow Τ τ_{mar} $I_{\mathcal{C}}$ I_{DC} 累積電圧 余剰電圧 V_{ref} V_C 出力パルス J_{step}τ ジッタを含んだパルスが生成 V_{jitter}

<u>帰還部がないときの動作例</u>

③帰還部の必要性

【放電時間の短縮】

- ▶ 放電時間は電圧差が小さい程短い
- > 放電時間 t_c が1周期 τ 内で放電できることが理想

$$t_C \leq \tau_{mar} = \tau$$

放電時間の短縮は動作の高速化へ

提案回路の動作例

ジッタのシミュレーション結果

> 入力波形(赤線)に基づいたジッタ量(青線)

重畳したジッタ量のスペクトラム

◆ジッタ量スペクトラム → 入力信号の基本周波数:1kHz

ジッタの特性式

ジッタの偏移範囲

 $W_{pulse_ref} \leq \text{jitter} \leq W_{pulse_max}$

$$\left(J_{\text{step}}\tau - \frac{CV_{\text{ref}}}{I_{\text{DC}}}\right) \le \text{jitter} \le \left(J_{\text{step}}\tau - \frac{CV_{\text{ref}}}{(I_{\text{DC}} + I_{\text{AC}})}\right)$$

$$\Delta Jitter = \frac{I_{AC}}{I_{DC}} \left(\frac{C}{(I_{DC} + I_{AC})} \right) V_{ref}$$

各パルスのジッタ量比較図

ジッタ(high-sampling時)

20/34 ジッタスペクトラム(high-sampling時) ◆ジッタ量スペクトラム ▶ 入力信号の基本周波数:1kHz 10^ĭ Normalizec 10⁻¹ Power 10⁻²

10⁻³-

アウトライン

◆ジッタ生成の高精度化 > マルチビット化 > 移動平均法

◆回路シミュレータによる検証

マルチビットΔΣジッタ生成回路

マルチビットΔΣジッタ生成回路

マルチビット方式のジッタ量

◆高周波成分は大きく低減出来ている

 ⇒マルチビット化による量子化雑音が低減

 ◆合計21stepのジッタが出力できたが、Sincのような波形

 ⇒基本周波数近傍の周波数成分が原因
 ⇒強いノイズシェーピング特性を持たせれば、改善できる可能性有り

アウトライン

24/34

◆ジッタ生成の高精度化 >マルチビット化 >移動平均法

◆回路シミュレータによる検証

ディジタルフィルタ

k区間の平均

FIRフィルタ(LPF)

- ▶ 過去の計算を次タームへ活かす方法
- ▶ 移動平均の原理

移動平均とは?

> 平均区間を移動させながら平均値を計算する計算方法 $AVR = \frac{x[n] + x[n-1] + x[n-2] + \dots + x[n-k-1]}{k}$ $x[n] x[n-1] \cdots x[n-k-1] \cdots x[n-m-1] x[n-m]$

平均して1つ横に移動をm回繰り返す

ディジタルフィルタ

FIRフィルタ(LPF)

- ▶ 過去の計算を次タームへ活かす方法
- ▶ 移動平均の原理

移動平均とは?

▶ 平均区間を移動させながら平均値を計算する計算方法 $AVR = \frac{x[n] + x[n - 1] + x[n - 2] + \dots + x[n - k - 1]}{k}$

離散時間信号をディジタル信号処理することにより、 ソフトウェア上でLPFを実現可能

ΔΣ変調とディジタルLPF

1bit-LPF回路図

◆ΔΣの出力を電流に変換する際にLPFの機能を付加

- ▶ 平均区間の数だけ電流源が必要
- ▶ 電流源値を全て統一
- ▶ 小容量化可能

4個(平均区間数)用意

周波数スペクトラムの確認

高周波成分が低減 ⇒ディジタルフィルタによる高周波成分の低減 ⇒入力に対するジッタ波形の追従性が改善

アウトライン

◆ジッタ試験回路の提案
 > ΔΣ変調器
 > 提案ジッタ試験回路

◆ジッタ生成の高精度化
 > マルチビット化
 > 移動平均法

◆回路シミュレータによる検証

シミュレーション条件

シミュレーション結果

アウトライン

◆ジッタ試験回路の提案
 > ΔΣ変調器
 > 提案ジッタ試験回路

◆ジッタ生成の高精度化
 > マルチビット化
 > 移動平均法

◆回路シミュレータによる検証

PLLとΔΣジッタ生成回路の比較

◆PLLジッタ生成回路

- ▶ 発生可能ジッタパターン数は有限通り
- ▶ アナログ回路成分が多く、回路規模が大きくなりがち
- ▶ 外部ノイズの影響により、誤差が発生しやすい

➡ 高精度だが回路が大きくなりがち

◆提案ジッタ生成回路

- ▶ 発生可能ジッタパターン数は有限であるが、増やすことはできる
- ▶ パターンを増やすにつれて回路規模は大きくなる
- ▶ デジタル回路成分が多く、回路規模を小さくできる可能性有り
- ▶ 外部ノイズに強く、高速応答可能

■ 高精度且つ回路規模が抑えられる

歪みの原因

コンデンサの充電時間

定電流でのコンデンサの充電時間

マルチビットLPF回路

◆マルチビット+LPF(移動平均法)

- ▶ ユナリ型電流源LPFがbit数の分必要
- > 回路面積は比較的大きくなる

2²(bit数)×4個(平均区間数)用意

ジッタ量のシミュレーション結果

> sin波の復元性が高く、歪みもない
 > まだ、量子化雑音が残っている
 ⇒ bit数やサンプリング点数を増やすことで高精度化可能!?

Q&A

Q.FFTの分解能が低いのでは?

A.取得できるジッタのデータ量が少ないことが原因だと思います。 現在ジッタ量をそのまま抽出ができておらず、一度Excellに取り込 み、ジッタ量を抽出したうえでフーリエ変換しています。この処理 過程でジッタ成分が少なくなってしまいます。

今後はジッタ量をそのまま抽出できれば精度良いスペクトラムを 見ることができると思います。

Q.評価項目を増やすと新たな特性が得られると思います。時間 軸やガウシアン分布で見てみることで、提案回路の特性を別視点 で観測できると思います。

A.今後検討したいと思います。

Q.スペクトラム解析も様々あります。サブバンドの解析等も行って みては?

A.意見を頂きありがとうございます。参考にさせていただきます。

周波数スペクトラムの確認

移動平均後に高周波成分が減少している