電流共振形コンバータの効率における リーケージインダクタンスの最適値

〇白石尚也 落合政司 築地伸和 轟俊一郎 小堀康功 小林 春夫 高井伸和

群馬大学大学院 理工学府 電子情報・数理教育プログラム専攻 小林研究室

GunmaUniversity KobayasiLab

OUTLINE

•研究背景

・電流共振形コンバータの基本動作

電流共振形コンバータの損失と
リーケージインダクタンスと自己インダクタンスの比率の関係

▪実験

・Bmaxを一定にした場合の効率の算出

最終結果とまとめ

OUTLINE

•研究背景

・電流共振形コンバータの基本動作

・電流共振形コンバータの損失と リーケージインダクタンスと自己インダクタンスの比率の関係

・実験

・Bmaxを一定にした場合の効率の算出

・最終結果とまとめ

研究背景

スイッチング損失を低減させる手法 ZVS (Zero Voltage Switching)

図 スイッチング損失とZVSの概要

研究背景

スイッチング電源の高効率化の手法

スイッチング損失を低減させる手法 ZVS (Zero Voltage Switching)

用途・・・テレビなどの家電 ACアダプタ…etc

研究背景

研究目的

トランスの損失損失の和が最小となり、効率がもっともよくなる リーケージインダクタンスの最適値を実験により明らかにする

OUTLINE

·研究背景

・電流共振形コンバータの基本動作

電流共振形コンバータの損失と
リーケージインダクタンスと自己インダクタンスの比率の関係

•実験

・Bmaxを一定にした場合の効率の算出

・最終結果とまとめ

電流共振形コンバータ

1

 $t_2 t_3 t_4$

 t_1

 v_{dsQ1}

 v_{dsQ2}

- 1

1 1

 $t_5 t_6$

リーケージインダクタンスと励磁インダクタンス

電圧共振コンデンサと電流共振コンデンサ

スイッチの制御信号波形

 $i_D = i_{D1} + i_{D2}$

 v_{dsQ1}

 v_{dsQ2} .

 t_2 t_3 t_4

 $t_5 t_6$

 t_1

. i_{Dp}

t

t

スイッチの両端電圧

期間t1の動作

期間t1の等価回路

L's2:一次側換算の二次側リーケージインダクタンス、 n(=N1/N2):巻線比、Co':一次側換算の出力コンデンサ、 Ro':一次側換算の出力抵抗、iD1/n:一次側換算のD1の電流

期間t1の共振周波数fO

期間t2の動作

期間t2の共振周波数f1

期間t3の動作

期間t3の共振周波数

期間t4の動作

期間t4の共振周波数fO

電流共振形コンバータの出力特性

[1] 落合政司、"スイッチング電源の原理と設計,"株式会社オーム社, 2015年3月, 23

OUTLINE

·研究背景

・電流共振形コンバータの基本動作

電流共振形コンバータの損失と リーケージインダクタンスと自己インダクタンスの比率の関係

•実験

・Bmaxを一定にした場合の効率の算出

・最終結果とまとめ

電流共振形コンバータでのコア損失

ヒステリシス損失・・・B-H曲線のヒステリシスにより発生する損失 渦電流損失・・・コア内を通る磁束によって流れる電流による損失

リーケージインダクタンスと出力特性の関係

リーケージインダクタンスと出力特性の関係

出力ダイオードの損失

出力ダイオードが導通する期間

共振インピーダンスZ0

共振インピーダンスとダイオード電流の関係 31

共振インピーダンスとダイオード電流の関係 32

OUTLINE

·研究背景

・電流共振形コンバータの基本動作

電流共振形コンバータの損失と
リーケージインダクタンスと自己インダクタンスの比率の関係

▪実験

・Bmaxを一定にした場合の効率の算出

・最終結果とまとめ

トランスサンプルについて

トランスサンプルの作成

2種類のトランスサンプルを用意

サンプル(i)・・・ リーケージインダクタンスと励磁インダクタンスの和が一定で リーケージインダクタンスと自己インダクタンスの比率を変化させたもの

サンプル (ii)・・・ 励磁インダクタンスが一定で

リーケージインダクタンスと自己インダクタンスの比率を変化させたもの

測定条件について

測定条件の決定

①f2を一定にする。 ・・・ZVSを正常に行えるようにするため

→電圧共振コンデンサCvの調節

②f0を一定にする。・・・現在の一般的な共振周波数100kHzに固定

→電流共振コンデンサCiの調節

Cvの調節について

Cvの調節について

実験

測定条件の決定

①f2を一定にする。 ・・・ZVSを正常に行えるようにするため

→電圧共振コンデンサCvの調節

②f0を一定にする。・・・現在の一般的な共振周波数100kHzに固定

→電流共振コンデンサCiの調節

期間t1とt4の共振周波数fOについて

期間t1、t4の共振周波数f0

$$f_{0} = \frac{1}{2\pi\sqrt{L_{s}C_{i}}} = \frac{1}{2\pi\sqrt{(L_{s1} + \frac{L_{p}L'_{s2}}{L_{p} + L'_{s2}})}C_{i}}$$

各トランスの静特性と回路定数

サンプル(i)

サンプル(ii)

サンプル	1	2	3	4	サンプル	/	1	2	3	4
$L_{sl}[uH]$	11.2	16	16.9	22.2	$L_{sl}[uH]$		11.8	16	16.9	22.8
$L_p[\mathrm{uH}]$	98.9	114	92.1	93.8	$L_p[uH]$		111.2	114	113.5	114.1
L_{sl}/L_{l} [%]	10.15	12.3	15.5	19.1	L_{sl}/L_{l} [%]		9.6	12.3	13	16.7
$C_v[pF]$	600	470	610	560	$C_{\nu}[\mathrm{pF}]$		500	470	470	440
$C_i[\mathrm{uF}]$	0.12	0.1	0.082	0.062	$C_i[uF]$		0.11	0.1	0.082	0.062
Gap[mm]	0.225*2	0.20*2	0.25*2	0.25*2	Gap[mm]]	0.2*2	0.20*2	0.188*2	0.2*2
一次側巻線抵抗 $R_m[m\Omega]$	228.7	225.4	212	212	一次側巻線排 $R_m[m\Omega]$	氐抗	229.1	225.4	212.3	212.1
<i>S1</i> 巻線抵抗 <i>R_{ml}[mΩ]</i>	66.2	66	66.1	66.3	S1巻線抵打 R _{m1} [mΩ]	τ̈́	66.6	66	66	65
S2巻線抵抗 R _{m2} [mΩ]	66.8	67.1	66.1	66.3	S2巻線抵打 R _{m2} [mΩ]	τ. T	66	67.1	65.2	65.1

実験回路と(i),(ii)で共通するトランス仕様及び動作電圧・電流 41

	型名	EK28/34D	
フェライト	有効磁路長 <i>l</i> [mm]	74.98	
コア	有効断面積 $S[mm^2]$	79.21	
	有効体積V[mm ³]	5938.81	
トランス	一次卷線卷数N ₁ [回]	21	
	二次巻線SIの巻数N _{si} [回]	6	
	二次巻線S2の巻数N _{s2} [回]	6	
入力電圧E _{in}	AC100		
出力電圧E _{on}	DC24		
負荷電流I。[1	1,2,3		

効率の測定ポイント

本実験における効率の定義

効率=DC出力電力/AC入力電力 × 100 [%]

42

42

効率測定結果

軽負荷の時はリーケージインダクタンスが 低い方が効率が良い

OUTLINE

·研究背景

・電流共振形コンバータの基本動作

電流共振形コンバータの損失と
 リーケージインダクタンスと自己インダクタンスの比率の関係

・実験

・Bmaxを一定にした場合の効率の算出

・最終結果とまとめ

B_{max} を一定にした場合の効率の算出

サンプル(i)

サンプル(ii)

45

コア損失の算出

磁束密度Bは以下の式で導出される

ie: 励磁電流測定値 →効率測定の際に一緒に測定する

 $B = \frac{i_e L_p}{N_1 S}$

Lp: 励磁インダクタンス N1: 一次側巻線巻き数 S: コアの有効断面積 →トランスの仕様より

実験条件での磁束密度Bを算出

コア損失と磁束密度の関係

Pcv–Bm

関係式

コア損失の算出

磁束密度Bを一定にした場合のコア損失の算出

今回一定にする磁東密度 B' は

$$B' = \frac{i'_e L_p}{N_1 S}$$

Lp、N1、S はトランスにより決定しているので、
励磁電流 ie' を調節してBを一定にする。
 $P'_{cv} = 0.000091 \times f^{1.528} \times B'^{2.860} \times 10^3 [W/m^3]$
B'= 120 [mT] とした場合のコア損失 P'cv を算出する。

実験データにコア損失の差分を換算

銅損の換算

磁束密度Bを一定にした場合のコア損失の算出

今回一定にする磁東密度 B'は 120 [mT]とする。

Lp、N1、S はトランスにより決定しているので、 励磁電流 ie'を調節してBを一定にする。

サンプル(ii)計算例

サンプル	$L_p[uH]$	B'[T]	i _e '[A]
1	111.2	0.12	1.80
2	114	0.12	1.75
3	113.5	0.12	1.76
4	114.1	0.12	1.75

銅損を算出

実験結果に銅損の差分を換算

サンプル(i)の測定結果 サンプル(ii)の測定結果 91.0 91.0 $I_o=1A$ $I_o=2A$ 90.0 $I_o = 1 \text{A}$ 90.0 $I_o = 2A$ 89.0 89.0 Efficiency [%] 88.0 87.0 86.0 85.0 84.0 Efficiency[%] $I_o=3A$ *- $I_o=3A$ 88.0 87.0 86.0 85.0 84.0 83.0 83.0 82.0 82.0 15 10 20 25 5 5 10 15 20 25 $L_{s1}/L_{1}[\%]$ $L_{s1} / L_{I} [\%]$ 差分を効率の測定結果に換算 銅損の差分 Pr P'r _

OUTLINE

·研究背景

・電流共振形コンバータの基本動作

電流共振形コンバータの損失と
 リーケージインダクタンスと自己インダクタンスの比率の関係

・実験

・Bmaxを一定にした場合の効率の算出

・最終結果とまとめ

Bmaxを一定にした場合の効率

結果の比較

サンプル(i) 測定生データ

まとめ

リーケージインダクタンスと自己インダクタンスの比率を変化させた 2種のトランスサンプルを用いて、電流共振形コンバータの効率と リーケージインダクタンスと自己インダクタンスの比率の関係を測定した。

実験の結果、電流共振形コンバータの効率が最も良くなる リーケージインダクタンスと自己インダクタンスの比率は12.3%であった。

付録

効率測定生データ サンプル(i) 他入力電圧

B一定時の効率データ サンプル(i) 他入力電圧

付録

効率測定生データ サンプル(i) 他入力電圧

付録

効率測定生データ サンプル(i) 他入力電圧

付録

B-定時の効率データ サンプル(i) 他入力電圧

付録

B-定時の効率データ サンプル(i) 他入力電圧

付録

効率測定生データ サンプル(ii) 他入力電圧

B一定時の効率データ サンプル(ii) 他入力電圧

付録

効率測定生データ サンプル(ii) 他入力電圧

付録

効率測定生データ サンプル(ii) 他入力電圧

付録

B一定時の効率データ サンプル(ii) 他入力電圧

付録

B一定時の効率データ サンプル(ii) 他入力電圧

付録

動作周波数測定結果 サンプル(i)

付録

動作周波数測定結果 サンプル(ii)

付録

励磁電流測定結果 サンプル(i)

付録

励磁電流測定結果 サンプル(ii)

73

付録

1次巻線電流実効値 サンプル(i)

付録

1次巻線電流実効値 サンプル(ii)

付録

2次巻線電流実効値 サンプル(i)

付録

2次巻線電流実効値 サンプル(ii)

◆1st サンプルの仕様

表1 各サンプルのインダクタンス

	X=L ₁ (μΗ)	Y=L _s (μH)	L _{s1} (μΗ)	L _Ρ (μΗ)	L _{S1} /L _P (%)	L _{S1} /L ₁ (%)	Gap (mm)
EXT45742-072X	110	21.2	11.2	98.8	11.3	10.15	0.225×2
EXT45742-072Y	109	31.2	16.9	92.1	18.35	15.5	0.25×2
EXT45742-072Z	116	40.2	22.2	93.8	23.7	19.1	0.25×2
EXT45742-072U	117.6	52.8	30.3	87.3	34.7	25.77	0.3×2
EXT45742-072V	116.4	59.7	35.2	81.2	43.3	30.2	0.3×2
現状品	130	30	16	114	14.0	12.3	0.2×2

X:二次側開放時のインダクタンスの測定値、X= L₁=L_P+L_{S1} Y:二次側短絡時のインダクタンスの測定値、Y= L_S=L_{S1}+(L_P×L_{S1})/(L_P+L_{S1}) L_{S1}:一次リーケージインダクタンス、 L_P:一次励磁インダクタンス L₁:一次自己インダクタンス、L₁=L_P+L_{S1}

◆1st サンプルの仕様

表2各サンプルの巻線抵抗

		巻線抵抗(mΩ)					
		Prim. ②-⑥	Drive ①-④	S1 11-14	S2 12-13		
EXT45742-072X		228.7	69.9	66.2	66.8		
EXT45742-072Y		212.0	59.8	65.2	66.1		
EXT45742-072Z		212.4	60.4	65.3	66.3		
EXT45742-072U		238.6	73.2	66.2	66.4		
EXT45742-072V		235.4	69.3	67.4	69.8		
	巻数(t)	21	5	6	6		
備考	巻線	0.1¢/70	0.35ф	0.1¢/70	0.1¢/70		
	巻方	整列巻き	整列巻き	バイファイラ 巻き	バイファイラ 巻き		

◆2ndサンプルの仕様

表1 各サンプルのインダクタンス

	X=L ₁ (μΗ)	Y=L _s (µH)	L _{s1} (μΗ)	L _Ρ (μΗ)	L _{S1} /L _P (%)	L _{S1} /L ₁ (%)	Gap (mm)
EXT45742-072X2	123	22.5	11.8	111.2	10.6	9.6	0.2×2
EXT45742-072Y2	130.5	31.7	16.96 ≒17	113.5	15.0	13.0	0.188×2
EXT45742-072Z2	136.9	41.8	22.8	114.1	20.0	≒16.7	0.2×2
EXT45742-072U2	139.0	53.9	30.2	108.8	27.8	21.7	0.225×2
EXT45742-072V2	147.5	61.3	34.9	112.6	31.0	23.7	0.2×2
現状品	130	30	16	114	14.0	12.3	0.2×2

X:二次側開放時のインダクタンスの測定値、X= L₁=L_P+L_{S1} Y:二次側短絡時のインダクタンスの測定値、Y= L_S=L_{S1}+(L_P×L_{S1})/(L_P+L_{S1}) L_{S1}:一次リーケージインダクタンス、 L_P:一次励磁インダクタンス L₁:一次自己インダクタンス、L₁=L_P+L_{S1}

◆2ndサンプルの仕様

表2各サンプルの巻線抵抗

		巻線抵抗(mΩ)					
		Prim. 2-6	Drive ①-④	S1 11-14	S2 12-13		
EXT45	5742-072X2	229.1	68.8	66.6	66.0		
EXT45742-072Y2		212.3	58.7	66.0	65.2		
EXT45742-072Z2		212.1	60.2	65.0	65.1		
EXT45742-072U2		234.0	69.6	65.1	64.7		
EXT45742-072V2		230.3	69.6	68.4	68.8		
	巻数(t)	21	5	6	6		
備考	巻線	0.1¢/70	0.35ф	0.1¢/70	0.1¢/70		
	巻方	整列巻き	整列巻き	バイファイラ 巻き	バイファイラ 巻き		

◆励磁電流と巻線電流実効値の関係 サンプル(i)

◆励磁電流と巻線電流実効値の関係 サンプル(ii)

D&A

Q1.効率は何%オーダーで測定しているのか。 信頼性、精度に問題はないのか。

A1. 入力電力はワットメーターで測定、出力電力については 負荷電流は電子負荷で引いて、出力電圧は電子電圧計で測定して 積で計算している。 入力電力はワットメーターで0.1Wオーダーで測定できて、 電子電圧計は0.001Vまで測定できます。 なので信頼性はあると思います…?

Q2. 効率のピークを探すのが今後の課題で 挙げられていたが、どの程度の精度で進めていくつもりですか。

A2.1%刻みくらいが適当かと思います。

感想 (白石)

実測はいろんな条件によって測定結果が変化します。

なので測定機器はなにを使ったのか、数値は小数点第何位まで測定できるのか、 どういう環境でどういう手順で行ったのか、こういった部分は実測結果を示す上で、 非常に大事な要素だなと感じました。

質問で結果の信頼性について質問を受けましたが、こういった部分について あまり意識して実験を行ってなかったので、質問の意図がわからず うまく答えることができませんでした。

発表資料もその部分については全く触れていないものだったので、 そのような質問をうけたのだと思いました。

シミュレーションばかりやっていては気づけなかったと思います。

この研究・発表はこれから商品の信頼性が非常に大事にされる 企業で働くにあたって非常にいい経験になったと感じています。 共同研究を与えてくださった小林先生、落合先生、築地さん 本当に有難う御座いました。 86