制御時間比率が変化する SIDO 電源の検討

白石 尚也,築地 伸和,須永 祥希,浅石 恒洋,小堀 康功,高井 伸和,小林 春夫(群馬大学)

Naoya Shiraishi, Nobukazu Tsukiji, Yoshiki Sunaga, Koyo Asaishi, Yasunori Kobori, Nobukazu Takai, Haruo Kobayashi (Gunma University)

キーワード:スイッチング電源、DC-DC コンバータ、単一インダクタ多出力電源回路、電圧制御、鋸歯状波、一巡伝達特性 (Keywords: Switching converter, DC-DC Converter, Single Inductor Multi-Output Power Supply Circuit, Voltage control, Sawtooth wave, Loop transfer characteristic)

1. はじめに

電子機器の小型化の要求から、電源回路にも小型化が求 められている。解決策として1つのインダクタより多数 の電圧を出力する、単一インダクタ多出力(Single Inductor Multi Output: SIMO)電源が研究されている^{[2]~[3]}。基本的 な SIMO は、各出力の負荷電流を時分割で排他的に制御す ることでインダクタを共有する。しかし、基本的な SIMO は1つの出力だけで大きな負荷電流が必要になるときに対 応できない問題があった。文献^[1]では、上記の課題解決の ために、単一インダクタ2出力(Single Inductor Dual Output : SIDO)電源において、一定であった出力端子の制御時間 比率を可変にする制御方式について検討している。しかし、 従来方式で提案された鋸歯状波のピーク値を一定にする制 御を用いた SIDO では、条件によって出力が不安定になる 問題があった。

本論文では上記の原因について鋸歯状波が一巡伝達特性 に与える影響について考察し、問題点を明らかにする。こ の問題を解決するために、鋸歯状波のピーク値ではなく、 傾きを一定にする鋸歯状波を用いた新方式を提案する。さ らに、傾きを一定にした鋸歯状波の特徴を利用した、三角 波とSR-FFを用いた新たな制御時間信号生成回路を提案す る。インダクタ電流は不連続モード (DCM)を採用した。シ ミュレーションの結果、従来方式と比較して様々な条件で も安定性を保証できることと、より大きな負荷電流の供給 量差での安定した動作を確認した。

2. 基本的な SIDO 電源回路

2・1 基本的な SIDO 電源の構成と動作原理 基本 的な降圧-降圧形 SIDO コンバータの全体構成の概略図を図 1(a) に示し、動作波形の一例を図 1(b) に示す。図 1(b) は、ハ イサイドコンバータ (v_{o1} 側出力部)の負荷電流 I_{o1} が、ロー サイドコンバータ (v_{o2} 側出力部)の負荷電流 I_{o2} より大き い場合であり、その時の各スイッチング信号 (SEL、PWM1、 PWM2)と鋸歯状波 (saw1、saw2)、エラーアンプ EA1、EA2 の出力 (v_{c1} 、 v_{c2})、インダクタ電流 (i_L)の波形を示してい る。 i_L は DCM の場合である。 T_s が一周期であり、 T_{o1} が ハイサイドコンバータ、 T_{o2} がローサイドコンバータの制 御時間である。SEL は、図 1(a) の S1、S2 を制御する信号

(a) 回路構成の概略図

(a) Schematic diagram of the circuit configuration

(b) SEL,saw,v_c,PWM,i_L 波形の一例
(b) Waveform examples of SEL,saw,v_c,PWM,i_L

であり、基本的な SIDO コンバータにおいて、制御時間比 *T*_{o1}:*T*_{o2} は 1:1 の割合で固定である。

図 1(b) の saw1 (saw2) は SEL 信号を入力とし、図 1(a) の saw1、saw2 ブロックで生成される。期間 T_{o1} の PWM を PWM1、期間 T_{o2} の PWM を PWM2 とする。PWM1、 PWM2 はそれぞれ v_{c1} 、 v_{c2} と saw1、 saw2 をコンパレータ comp1、 comp2 で比較することで生成される。インダクタ 電流 i_L は S0 の ON/OFF により増減し、その面積によって

図 1 基本的な降圧-降圧形 SIDO コンバータ Fig. 1. Basic buck-buck SIDO converter

(a) I₀₁が増加するときの PWM1、(b) I₀₁が最大値になった場合の
 PWM2 幅の変化
 PWM1、PWM2 幅
 (a) Change of width of PWM1, (b) Width of PWM1, PWM2 when

PWM2 when Io1 increases

 I_{o1} is maximum value

図 2 基本的な SIDO コンバータにおける *I*₀₁ の増加による PWM1.PWM2 幅の変化

Fig. 2. Change of width of PWM1, PWM2 due to increase of I_{o1} in basic SIDO converter

図 3 T_{o1}:T_{o2} が変化する場合の PWM1、PWM2 幅と I_{o1}、 I_{o2} の関係

Fig. 3. Relation between width of PWM1, PWM2 and I_{o1} , I_{o2} when T_{o1} : T_{o2} changes

 I_{o1} 、 I_{o2} の値が決定される。負荷電流が多いハイサイドコンバータの v_{c1} は v_{c2} より高く、PWM1の幅はPWM2より広い。

2.2 基本的な SIDO 電源の問題点 ここで、さらに 多くの Io1 を供給したい場合を考える。このときの PWM1、 PWM2 と *i*_L の変化を図 2 に示す。図 2(a) に示すように、 *I*₀₁ を増加させるために PWM1 が増加していくと、*i*_L が 0 になる前に To2 に移行する状態になる。このとき、PWM2 は一定の I₀₂ を保持するために減少していく。I₀₁ が更に増 加し PWM1 が PWM1max となった場合を 図 2(b) に示す。 PWM2 を 0 にしても図 2(a) と比べ、過剰な Io2 になってい る様子がわかる。また、 I_{o1} の最大値 I_{o1max} は、 T_{o1} によっ て制限されているため、これ以上の Io1 は供給できない。 上記の状態では、*I*₀₁ と *I*₀₂ に大きく差がある場合に、両コ ンバータに所望の負荷電流を供給できずに、一定の出力電 圧を保持できない。ここで、T₀₁:T₀₂が変化する場合の PWM1、PWM2 と *i*_L の変化を図 3 に示す。図 3 に示すよう に、 T_{o1} : T_{o2} が I_{o1} と I_{o2} によって変化すれば、 I_{o2} は所望 の値を保持でき、更に大きな Io1 が供給できる。次節に制 御時間比率の変動にともなう、saw1、saw2の扱いについて 考察する。

3. 鋸歯状波と一巡伝達特性の検討

制御時間比率が変化した場合、図 1(a) の saw1 (saw2) ブロ

(a) 傾きが一定の場合(a) When gradient is const.

(b) ピーク値 saw_p が一定の場合 (b) When peak value saw_p is const.

図 4 制御時間比率の変化に伴う鋸歯状波の変化 Fig. 4. Change of sawtooth due to control time ratio

図 5 saw1 の傾きの違いによる Δ PWM1 の変化 Fig. 5. Variation of Δ PWM1 due to defference of gradient of sawtooth

ックに入力される信号の H/L 時間が変動するために、saw1、 saw2 に影響を与える。文献^[1] では、図 4(b) に示すように ピーク値を一定にする制御を行っていた。図 4(b) から、鋸 歯状波の傾きが変化していることがわかる。傾きが変化す ると PWM 生成部のゲイン特性が変化する。図 5 に示すよう に、同じ v_c の変化量 Δv_c に対する PWM の変化量 Δ PWM は、sawの傾きで異なる (Δ PWM₁ と Δ PWM₂)。 v_c の変化 に対する PWM の変化 Δ PWM / Δv_c は PWM 生成部のゲイ ン特性として表されるが、saw の傾きが変化するとゲイン 特性が変化し、全体の一巡伝達特性に影響を与えることに なる。ゲイン特性が変化すると、安定性の指標である位相 余裕に影響を与えるため、鋸歯状波のピーク値を一定にす る制御は、条件によって安定性が損なわれる可能性がある ことがわかる。

4. 提案方式

4・1 提案方式の構成 提案方式では、ゲイン特性 を変化させず、どのような制御時間比率に変化した場合で も安定性を保証するために、鋸歯状波の傾きを一定にする 方式を採用する。図4(a)に示すように、鋸歯状波の傾きを 一定にすることで、どのような条件でも伝達特性を一定に でき、あらゆる $T_{o1}:T_{o2}$ においても系の安定化を実現でき る。また、鋸歯状波の傾きが変化すると、同じ PWM 幅を 生成するための v_c の値が複数あった。図6(a)に一例を示 す。同じ i_L の面積 (I_{o1}) を生成するための PWM1の幅は1 つであるのに対し、同じ PWM1の幅を生成するための v_{c1} は、 T_{o1} によって鋸歯状波の傾きが変化している影響で、複 数存在していることがわかる。鋸歯状波の傾きを一定にす

(a) sawtooth の傾きが変化する場合(a) In case of gradient of sawtooth

(b) sawtooth の傾きが一定の場合
(b) In case of gradient of sawtooth

changes is constant 図 6 sawtooth の傾きによる v_c の値の変化

Fig. 6. Variation of v_c due to gradient of sawtooth

図7 提案方式 SEL 信号生成回路の概略図

Fig. 7. Schematic diagram of SEL signal generator circuit in proposed method

⁽a) $v_{c1} \geq v_{c2}$ が等しい場合 (a) In case of v_{c1} is equal to v_{c2}

ることで、図 6(b) に示すように、どのような T_{o1} でも v_{c1} の値は一意に決定される。次節でこの v_{c1} 、 v_{c2} が一意に決まることを利用した新しい SEL 信号生成回路を提案する。

4・2 提案方式における SEL 信号生成回路 図 7 に 提案方式における SEL 信号生成回路の概略図を示す。tri1 とtri2 は互いに半周期位相差のある三角波であり、 v_{c1} 、 v_{c2} とtri1、tri2 をそれぞれ comp1_{SEL}、comp2_{SEL} で比較し S、 R 信号を得る。S、R 信号の立ち上がりを SR-FF で検出する ことで SEL 信号を得る。図 8(a) に示すように、 $v_{c1} \ge v_{c2}$

図 9 三角波の振幅、 Δv_{c1} 、 ΔT_{o1} の関係 Fig. 9. Relation between amplitude of triangle wave, Δv_{c1} and ΔT_{o1}

表1 シミュレーション条件

Table 1. Simulation conditions	
入力電圧 v _{in}	10V
出力電圧 vo1	5.0V
出力電圧 v _{o2}	4.0V
負荷電流 Io1	0.1~10A
負荷電流 Io2	0.1~10A
参照電圧 V_{ref1}	5V
参照電圧 V_{ref2}	4V
インダクタL	$0.5 \mu H$
出力容量 C	470µF
動作周波数 f	200kHz

が等しい場合、 $T_{o1}:T_{o2}=1:1$ の SEL 信号を生成できる。図 8(b) に示すように、 $v_{c1} \ge v_{c2}$ に差がある場合は、値によっ て $T_{o1}:T_{o2}$ は変化する。図 9 に示すように、tri1 (tri2)の振 幅によって、 Δv_{c1} に対する、 ΔT_{o1} は変化する。tri1、tri2 の設計の際には、まず仕様によって決まる $I_{o1} \ge I_{o2}$ の最 大値から、 i_L の最大面積を求める。その面積 (負荷電流)を 生成するために必要な制御時間を求める。鋸歯状波の傾き を一定にすることで、 I_{o1} 、 I_{o2} から $v_{c1} \ge v_{c2}$ は一意に決 定されるため、その v_{c1} 、 $v_{c2} \ge$ tri1、tri2から i_L の面積を 生成できるだけの $T_{o1}:T_{o2}$ となるように tri1 と tri2の振幅 を設計する。

5. シミュレーション結果

提案方式の動作を確認するために、図 1(a) に示す降圧-降圧形 SIDO コンバータの saw1、saw2 ブロックには saw1、 saw2 の傾きを一定にする鋸歯状波生成回路を、SEL ブロッ クには図 7 に示す提案回路を用いて、シミュレーションを 行った。表1にシミュレーションパラメータを示す。まず、 負荷電流を I_{o1} =0.5A、 I_{o2} =0.5A とし、一巡伝達特性を検証 した。ただし、DCM では負荷電流に伴い一巡伝達特性が 変化するため、上記のシミュレーションでは、負荷電流を 0.5A で固定し、制御時間比率を提案方式の制御ループで決 定するのでなく、回路プールを切り、意図的に変化させて いる。また、 $T_{o1}: T_{o2}$ はおよそ1:1から1:10 に変化さ せている。従来方式と提案方式において、 $T_{o1}: T_{o2}$ の変化に 対するハイサイドコンバータの一巡伝達特性の変化をそれ ぞれ図 10、図 11 に示す。両図ともに、制御時間比率が1

⁽b) $v_{c1} \ge v_{c2}$ に差がある場合 (b) In case of there is a gap between v_{c1} and v_{c2}

図8 v_{c1}, v_{c2} の値に対する $T_{o1}: T_{o2}$ の変化 Fig. 8. Variation of $T_{o1}: T_{o2}$ due to value of v_{c1}, v_{c2}

図 10 従来方式における一巡伝達特性

: 10 の場合が Gain1、Phase1 であり 1:1 の場合が Gain2、 Phase2 である。図 10 では、*T*₀₁:*T*₀₂ の変化に対して、ゲイン 特性が変化している。位相余裕が約 52°から約 23°とおよ そ 30°減少し、安定性を欠いていることがわかる。図 11 で はゲイン特性が変化しておらず、位相余裕を一定に保つこ とができ、安定性を保持できている。次に提案回路におい て、負荷電流を Io1=10A、Io2=0.1A (Io1:Io2=100:1) とした場 合と、*I*₀₁=1A、*I*₀₂=1A(*I*₀₁:*I*₀₂=1:1)とした場合、*I*₀₁=0.1A、 *I*₀₂=10A (*I*₀₁:*I*₀₂=1:100) とした場合の SEL、*i*_L の波形をそ れぞれ図 12、図 13、図 14 に示す。図 13 において、負荷電 流比 Io1:Io2 が 1:1 のとき、制御時間比 To1:To2 はほぼ 1:1 と なっている。図 12、図 14 において、 *I*₀₁:*I*₀₂ が 100:1、1:100 と差がある場合は、T_{o1}:T_{o2}を変動させ負荷電流の大きい 側の制御時間が増加している。この動作により、大きな負 荷電流差でも安定して所望の負荷電流を供給することがで きる。

6. まとめ・今後の課題

本論文では、従来方式で提案された鋸歯状波の傾きを変

化させる方式の問題点を述べ、一巡伝達特性を一定に保ち、 様々な条件下でも安定性を保証できる新方式を提案した。 シミュレーションの結果、提案方式では一巡伝達特性を変 化させずに、位相余裕を一定に保ち、安定性を保持できる ことを確認した。また $I_{o1}: I_{o2} = 10A: 0.1A (100:1)$ の電流 差での動作を確認した。今後の課題は、インダクタ電流電 流連続モードでの動作を検証することである。

参考文献

- (1)高井伸和,白石尚也,小堀康功,築地伸和,金谷浩太郎,田中 駿祐,小林春夫,"大きい負荷電流差に対応可能な単一イ ンダクタ2出力 DC-DC Converter の提案,"電子情報通信 学会論文誌, J-98-A, No.8, pp.502-509, Ang 2015.
- (2) W. Xu, X. Zhu, Z. Hong, and D. Killat, "Design of Singleinductor dual-output switching converters with average current mode control," IEEE Asia Pacific Conference on Circuits and Systems, pp.902-905, December 2008.
- (3) W.H. Ki, and D. Ma, "Single-Inductor multiple-output switching converters, "Power Electronics Specialists Conference, vol.1, pp.226-231, June 2001.