ZVS-PWM 制御昇圧形電源のスペクトラム拡散技術による EMI 低減化

須永祥希* 白石尚也 浅石恒洋 築地伸和 小堀康功 小林春夫 高井伸和(群馬大学)

EMI Reduction by Spread Spectrum of ZVS-PWM Boost Converter Yoshiki Sunaga, Naoya Shiraishi, Koyo Asaishi, Nobukazu Tsukiji, Yasunori Kobori, Haruo Kobayashi, Nobukazu Takai (Gunma University)

キーワード:スイッチング電源,DC-DC コンバータ、ソフトスイッチング、ZVS-PWM 制御,SIDO 電源 (Keywords, DC-DC Switching Converter, Soft Switching, ZVS-PWM Control, SIDO Converter)

1. はじめに

今日、多くの電子機器は多種多様な直流電圧を必要とし、 これらの電流を供給するために多くのスイッチング電源が 設けられている。スイッチング電源における社会の要求は 小型化や高効率化など様々だが、スイッチング時の不要ノ イズ等の電磁波輻射(Electro-Magnetic Interference: EMI) も問題となっている。これらのノイズは周辺の電子機器に 悪影響を及ぼすことから、多くの国で EMI 規制がされてい る。

高効率の実現としてソフトスイッチング方式のひとつで ある ZVS-PWM(Zero Voltage Switching – Pulse Width Modulation)方式によるスイッチング電源の報告⁽¹⁾⁽²⁾がされ ている。また ZVS 制御は、スイッチング時の突発的な電圧 変化を防ぐことから、スイッチング時の高調波ノイズや EMI 低減の効果も期待できる。

一方、スイッチング電源のノイズ低減の方法として、制 御信号を変調することでのスペクトラム拡散技術が議論さ れており、なかでも疑似アナログ信号を用いたノイズ低減 手法が提案されている⁽³⁾。

今回、高効率等の利点をもつ ZVS-PWM 制御に、スペク トラム拡散技術を適用させ、更なる EMI 低減を試みた。本 論文はスイッチング電源の中でも昇圧型に焦点を当て、ス ペクトラム拡散を用いた ZVS-PWM 制御昇圧型電源の EMI 低減について、シミュレーションを用いて解析を行ったも のである。この結果ノイズレベルは最大 9.1dB 低減された。

2. ZVS-PWM 単電源

〈2·1〉 動作原理

図1に一般的な ZVS 制御昇圧型単電源を示す。この方式の回路構成は、通常の昇圧型電源のダイオードに並列に共振コンデンサCrを加える。この基本動作をモード別に図2

のシミュレーション動作波形を用いて説明する。表 1 にシ ミュレーション条件を示した。なお、今回の全シミュレー ションには SIMPLIS を用いた。

モード1($t_0 \sim t_1$)

 $V_{sw} = 0$ を検知して、PWM が Lo から Hi になりスイッチ が ON する。一般的な昇圧電源と同様に、出力電圧と基準 電圧との誤差電圧をオペアンプで増幅し、コンパレータに より Sawtooth と比較して、PWM 信号を得ている。インダ クタ電流 I_L が増加を始め、エネルギーが L および C_r される。 この時の I_L の傾きは、 V_{in}/L で表される。

負期間の制御により、PWM が Hi から Lo になりスイッ チ SW が ON から OFF になる。この時、 $L \ge C_r$ の共振によ って V_{sw} が上昇する。

モード3 (t₂~t₃)

 V_{sw} は出力電圧 V_o とダイオードの順方向バイアス V_f の和まで上昇し、ダイオード Dが導通して共振状態は停止する。 この時の I_L の傾きは $(V_{in} - V_o)/L$ となる。インダクタのエネ ルギー放電により、ダイオードを介して出力コンデンサ C_o が充電される。この間インダクタ電流は減少を続け、 t_3 にて Lは全エネルギーを放出し反転電流となる。このモードでは V_{sw} は V_o+V_f に保たれる。

モード4 (t3~t4)

インダクタ電流の反転により、ダイオード Dが OFF して 再び $L \geq C_r$ は共振状態となり、 C_r は放電を始め V_{sw} は下降す る。その後 t_4 のタイミング、つまり V_{sw} =0V の時にスイッチ SW の両端電圧差が 0V となり、スイッチを ON することに より ZVS 動作を行う。 t_4 で PWM が Hi となりモード1へ と戻る。この PWM 信号の Hi 期間を制御することで、出力 電圧V₆を一定に保つ。

以上の動作より、コンデンサの共振電圧Vsw およびインダ

クタの共振電流*I*_Lを次式(1)(2)で表した。インダクタ電流 は負荷への方向を正とした。

$$V_{sw}(t) = (V_o - V_{in}) \cdot \cos \omega t + V_{in} \tag{1}$$

$$I_L(t) = -\{(V_{in} - V_o)/\omega L\} \cdot \sin \omega t \qquad (2)$$

$$\hbar \pi U \quad \omega = 1/\sqrt{L \cdot C_r} \tag{3}$$

 $V_{sw}(t)$ の最小値は $\cos \omega t = -1$ の時で、その値は $-V_o + 2V_{in}$ となる。スイッチの切り替え条件は $V_{sw} \leq 0V$ であることから、この回路の入出力電圧条件式(4)が導かれる。

$$-V_o + 2V_{in} \le 0$$

$$\therefore \quad V_o \ge 2V_{in} \tag{4}$$

この回路は、PWM 信号を Sawtooth 波形の周期を合わせ る必要がある。図 1 のように 2 つのコンパレータの出力で RS フリップフロップをトリガして PWM 信号を発生させる とともに、Sawtooth の開始点もt₀に合わせてトリガする。 PWM 信号が Hi のとき、スイッチは ON となる。

図 2 基本動作波形 Fig.2 Waveform of ZVS-PWM Boost Converter

3. ZVS-PWM 制御 SISO 電源の損失比較

〈3・1〉 スイッチング損失

トランジスタは ON/OFF が切り替わる時、その両端電圧 V(t)とスイッチに流れる電流I(t)の重なった面積分がスイ ッチング損失となり、次式で表される。

$$P_{sw} = \int_{0}^{\Delta t} I(t) \cdot V(t) dt$$
$$= \frac{1}{6} \cdot V \cdot I \cdot \Delta t$$
(5)

ZVS は *LC* の共振現象を利用して、トランジスタの両端 電圧がゼロとなった状態にスイッチングを行う方式で、原 理的にはスイッチング損失が発生しないことより、回路の 高効率化に有効である。

〈3・2〉 シミュレーションによる損失比較

図 5、図 6 に SISO 電源における通常電源と ZVS 制御電 源のスイッチング波形を示す。また表 2 に測定時のパラメ ータを示す。電流 I_{sw} と電 EV_{sw} が重なった部分がスイッチン グ損失 P_{sw} となる。(5)式によりスイッチ動作の ON/OFF に 対して算出すると、通常電源の損失 P_{sw} は約 60.5nW、ZVS 電源の損失 P_{sw} は約 13.3nW である。一秒当たりの損失はこ れに動作周波数を乗じて求められ、通常電源で 10.3mW、 ZVS 方式電源で 2.26mW であり、スイッチング損失 P_{sw} の 78%低減を波形からの算出により確認した。

表1 シミュレーション回路の素子パラメータ

'	Table 1 Parameter of Simulation Circuit					
	V _{in}	$2.5\mathrm{V}$				
	Vo	6V				
	L	3.9uH				

C_o	470uF
C_r	100nF
Io	0.12A
F _{clock}	$162.5 \mathrm{kHz}$
г	·•••· 作用 冲粉

F_{clock}:動作周波数

Fig.3 Switching Waveform of the Boost Converter

4. EMI 低減

(4・1) 疑似ランダム信号

図5にスペクトラム拡散を適用させた ZVS-PWM 制御 昇圧型電源回路の構成を示し、図6に生成されるデジタ ルパターン信号とスペクトラム拡散に用いる疑似アナロ グ信号(Pseudo Analog Signal: PAS)の波形を示す。また、 表3に測定に使用したシミュレーション条件を示す。

疑似アナログ信号は M 系列回路の出力信号であるラン ダムパターン信号を用いて生成する。M 系列回路とは、0 と1で構成される bit 列であり、その bit 数に応じて表現 できる出力パターンが変化する。今回は 3bit の疑似ラン ダムパターン発生回路を用いた。それらのランダムパタ ーンを AD 変換することにより、7 パターン周期のデジタ ル信号を生成する。これに LPF をかけることで、疑似ア ナログ信号を生成する。また、7 パターンの変化を拡大す る目的で、各 DFF 出力Q₀,Q₁,Q₂の反転も使用する(bit 反 転)ことにより、その組み合わせは 8 通りとなるため、生 成されるデジタル信号のパターンは7×8 = 56パターンと なる。bit 反転を用いることで、よりランダム性の高い疑 似アナログ信号を生成することができるようになり、ノ イズの低減に大きく有効である。

図 4 ZVS-PWM 制御昇圧型電源スイッチング波形 Fig.4 Switching Waveform of ZVS-PWM Boost Converter

表 2 スイッチング損失比較の シミュレーション使用パラメータ

Table.2 Simulation Parameter of

Switching Loss Comparison

	0		
	通常制御	ZVS-PWM 制御	
V _{in}	2.	5V	
Vo	6	V	
C_{in}	100)nF	
L	3.9	uH	
Co	470uF		
Cr		100nF	
I _o	0.1	2A	
F _{clock}	170.3kHz		

〈4・2〉 スペクトラム拡散手法

従来のスペクトラム拡散方式は、パルス周波数変調 (Pulse Frequency Modulation: PFM)やパルス位置変調 (PPM)などが挙げられるが、これらはデジタル制御であ るため動作する bit 数に拡散の度合いが依存してしまう。

図 5 スペクトラム拡散を用いた ZVS-PWM 制御昇圧型電源

図6 デジタルパターン信号と疑似アナログ信号の波形

Fig.6 Waveforms of Digital Signal and Pseudo Analog Signal

表 3	スペク	ŀ	ラム拡散解析	シミ	ユ	レーシ	Έ	ン条件
-----	-----	---	--------	----	---	-----	---	-----

Table.3 Parameter of Spread Spectrum Simulation

V _{in}	$2.5\mathrm{V}$
Vo	6V
C _{in}	1nF
L	2.2uH
Co	470uF
C_r	1nF
Io	0.12A
Clock	33.1kHz

それに対して疑似アナログ信号を用いたスペクトラム拡 散方式では、変調可能な範囲内において連続的に周波数 が変化するため、動作 bit に依存しない拡散が可能とな る。厳密には完全なアナログ信号を用いるのが最適であ るが、そのような信号を生成するのは困難であることか ら、生成の容易な疑似ランダム信号を代替とした。

図7にスペクトラム拡散の概要を示す。PWM の立ち下 がり時の信号生成を疑似ランダム信号と鋸歯状波との比 較によって生成することによって、PWM の周波数を微小 に変化させる。これによって PWM のスペクトルを拡散 させることが可能となる。

〈4・3〉 スペクトラム拡散解析結果

図 8 に各制御方式におけるスペクトル波形を示し、表 4 に測定結果をまとめた。従来の ZVS-PWM 制御昇圧型電 源に比べて、スペクトラム拡散を適用すると、最大スペ クトルが約 7.0dB 低減される結果となった。さらに bit 反転を用いると、従来方式より最大スペクトルが約 9.1dB 低減された。提案方式では、ノイズ低減効果を高めると 出力電圧リプルが増大する傾向にあるが今回の bit 反転 の場合で、出力電圧リプルの値は出力電圧の 0.29%であ り、電源としての性能に大きな影響を及ぼさない。

図 7 スペクトラム拡散の概要 Fig.7 Spread Spectrum

4. まとめ

昇圧型電源回路に ZVS-PWM 制御を用いることで、電源 回路のスイッチング損失の大幅低減を検討し、シミュレー ションで 78%の低減を確認した。また、ZVS-PWM 制御に おける、ノイズ低減効果の更なる有効化を図るため、スペ クトラム拡散によるノイズ低減の適用を提案した。これに より、ノイズレベルは通常の ZVS-PWM 昇圧型電源より 7.0dB 低減され、bit 反転を用いた場合は 9.1dB の低減に成 功した。また、bit 反転時の出力電圧リプルは最大で 17.4mV_{p-p}まで増大したが、これは出力電圧の 0.29%である ため、電源の性能には影響しない。

文 献

- (1) 小堀 康功、内藤 直也、築地 伸和、呉 澍,シャイフル ニザム・モーヤ、高井 伸和、小林 春夫、"ZVS-PWM 方式ソフトスイッチング による単インダクタ2出力電源",電気学会 電子回路研究会,札幌 (2014,7)
- (2) Nobukazu Tsukiji, Yasunori Kobori, Nobukazu Takai, Haruo Kobayashi, "Single-Inductor Dual-Output DC-DC Converter Design With ZVS-PWM Control", VLSI Circuits, Ho Chi Minh City, Vietnam (Oct. 22-24, 2014)
- (3) 金谷浩太郎、田中駿祐、本島大地、白石尚也、須永祥希、築地伸和、 小堀康功、高井伸和、小林春夫、"疑似アナログ信号を用いたスペク トラム拡散と DC-DC コンバータのスイッチング EMI 低減化 "電気 学会 電子回路研究会、秋田(2014.10)

Fig.8 Waveforms of Spread Spectrum

表 4 スペクトラム	拡散シミュレーション	ン結果
------------	------------	-----

TUDIO, I DIMMUUDII IVODAIUD DI DDICUU DDCCI AI	Table.4 S	imulation	Results of	of Spread	Spectrum
--	-----------	-----------	------------	-----------	----------

			-
	ZVS	PAS	PAS (Reversal)
Peak Spectrum	2.64V	0.533V (-7.0dB)	0.323V (-9.1dB)
Peak Frequency	759.4kHz	530.4kHz	$565.8 \mathrm{kHz}$
V _o Ripple	$9.25 mV_{p-p}$	$16.3mV_{p-p}$	$17.4mV_{p-p}$