高信頼性・低オン抵抗デュアルRESURF Nch-LDMOSの提案

松田順一 <u>小島潤也</u> 神山雅貴 築地伸和 小林春夫 群馬大学

20a-S422-11

Kobayashi Lab

アウトライン

- 研究背景•目的
- 従来型①②・新型 Nch-LDMOS構造
- シミュレーション結果
 - I_{DS}-V_{DS}特性
 - ブレークダウン特性
 - 正孔電流密度と電界形状
 - オン抵抗-耐圧特性
- ・まとめ

アウトライン

- 従来型①②・新型 Nch-LDMOS構造
- ・シミュレーション結果
 - I_{DS}-V_{DS}特性
 - ブレークダウン特性
 - 正孔電流密度と電界形状
 - オン抵抗-耐圧特性
- まとめ

LDMOS (Laterally Diffused MOS)

・横方向拡散MOS ゲート・ドレイン間の電界強度を緩和する構造 耐圧が高い⇒高電圧を印加可能

・パワーMOSの一種 電源回路のスイッチングなどに使用

集積型中高耐圧(30-50V)車載用LDMOSに注目

信頼性:車載用LDMOS>民生用LDMOS

信頼性の低下要因

研究目的

- インパクトイオン化
- ・Kirk効果
 - 電流増大(Current Expansion: CE)

耐圧60V·高信頼性LDMOS構造を提案

アウトライン

従来型①②・新型 Nch-LDMOS構造

・シミュレーション結果

- I_{DS}-V_{DS}特性
- ブレークダウン特性
- 正孔電流密度と電界形状
- オン抵抗-耐圧特性

まとめ

5/17

Nch-LDMOS構造 従来型(1)(2)

6/17

◆ 電子デバイス・半導体電力変換合同研究会, EDD-15-066,SPC-15-148, (2015年10月) に発表

- ・p-buried layer 1 ⇒ドリフト端周りでのRESRUFの強化とCEの抑制
- ・p-buried layer 2 ⇒ドリフト領域に沿ったRESURFの強化
- ·ドレイン下のp-buried layer 2の開口⇒CEの抑制と耐圧の維持

Nch-LDMOS構造 従来型(1)(2)

7/17

◆ 電子デバイス・半導体電力変換合同研究会, EDD-15-066,SPC-15-148, (2015年10月) に発表

新型 Nch-LDMOS構造

Ⅱ.フィールドプレート
 ➡ RESURFの強化
 耐圧の向上と低オン抵抗
 →ドリフト領域のドーズ量増加

アウトライン

従来型①2・新型 Nch-LDMOS構造

・シミュレーション結果

- I_{DS}-V_{DS}特性
- ブレークダウン特性
- 正孔電流密度と電界形状
- オン抵抗-耐圧特性

まとめ

10/17

従来型と新型のI_{DS}-V_{DS}特性の比較^{11/17}

	従来型①	従来型2	新型
電流増大(CE)	有	無	無
特性オン抵抗R _{on} A (A=width×pitch)	68.7mΩmm² (A=0.3×4µm²)	69.3mΩmm² (A=0.3×4µm²)	<mark>44.8</mark> mΩmm ² (A=0.3×3.725µm ²)

低信頼性

高信頼性

高信頼性 低オン抵抗化

従来型と新型のBV_{DS}の比較

	従来型①	従来型②	新型
ブレークダウン電圧BV _{DS}	68V	61V	60V

車載用中高耐圧LDMOS(50V動作)への応用 すべての構造で問題ない

ブレークダウン時の正孔電流密度分布^{13/17}

正孔電流密度と電界形状の比較

インパクトイオン化による正孔電流 ∝ 電子電流×電界×exp(-A/電界)

低

	従来型①	従来型②	新型
ゲート端周りでの正孔電流密度	高	低	低(x=1800nmでピーク)
ドレイン端周りの電界の大きさ	高	中	低(x=2700nmでピーク)

高

インパクトイオン化の発生率

※デュアルRESURF構造による

低(ピークの位置にズレ)

14/17

オン抵抗-耐圧特性

Ref[1]:S.Pendharkar "7 to 30V state-of-art power device implementation in 0.25µm LBC7 BiCMOS-DMOS process technology" Proc. Of ISPSD, p419-422, 2004. (Texas Instruments(米))

Ref[2]:R.Zhu, "Implementation of high-side, "high-voltage RESURF LDMOS in a sub-half micron smart power technology", ISPSD, p403-406, 2001. (Motorola (米))

Ref[3.4]:Choul-Joo Ko, et al., "Implementation of Fully Isolated Low Vgs nLDMOS with Low Specific On-resistance," ISPSD, pp. 24-27 (2011). (Dongbu Hitek(韓国))

アウトライン

従来型①②・新型 Nch-LDMOS構造

・シミュレーション結果

- I_{DS}-V_{DS}特性
- ブレークダウン特性
- 正孔電流密度と電界形状
- オン抵抗-耐圧特性
- ・まとめ

まとめ

 オン抵抗が大きい従来型②に対して新たな構造を取り入れ 高信頼性・低オン抵抗化した新型を提案した

項目	従来型①	従来型2	新型
ドレイン電流増大	強 (Current Expansion)	弱	弱
R _{on} A (mΩmm²)	68.7	69.3	44.8
BV _{DS} (V)	68	61	60
ブレークダウンの箇所	バルク	バルク	バルク
真性MOSFETのドレイン側ゲート端周りでの インパクト・イオン化による正孔電流密度	高	低	低
真性MOSFETのドレイン端周りの ドリフト領域内の電界の大きさ	高	中	<mark>低</mark> 〔インパクトイオン化 〕 発生の問題は無し

謝辞

本研究を進めるにあたり、3D TCADを貸していただいた アドバンスソフト社に深謝いたします。

この3D TCADは、国立研究開発法人科学技術振興機構 A-STEPプログラムの助成を受けてアドバンスソフト社で 開発されています。 Q1.耐圧などはシミュレーションでどれほどの精度があるのか。実測ではどうか。 A1.シミュレーションはアドバンスソフト社のTCADを用いて行い、実測に近いもの となっている。実測は行っていない。

- Q2.製造のときにフィールドプレートや層のズレがあると思うが、耐圧とかは 下がらないのか。
- A2.フィールドプレートや層のズレは耐圧の低下に繋がることがある。しかし、 今回は50V動作のときを考えており、提案した新型構造では+10Vの余裕を 持たせて耐圧を60Vにしてある。耐圧が低下しても動作時には問題がない ようにしてある。