制御工学は電子回路設計の基礎理論

工学でもっとも重要な発明
フィードバックの概念

群馬大学 小林春夫
安定な線形時不変動的システムの安定性の定義

安定な例

不安定な例

安定な例：

不安定な例：

安定な線形時不変動的システム

定義

\[\lim_{t \to \infty} g(t) = 0 \]

\(g(t) \)：インパルス応答
2階微分方程式で表されるシステムの伝達関数(1)

\[b_1 \frac{d}{dt} x(t) + b_0 x(t) = \frac{d^2}{dt^2} y(t) + a_1 \frac{d}{dt} y(t) + a_0 y(t) \]

入力
\[x(t) \]
Laplace変換
\[X(s) \]
\[\frac{d}{dt} x(t) \] Laplace変換
\[s \, X(s) \]
\[\frac{d^2}{dt^2} x(t) \] Laplace変換
\[s^2 \, X(s) \]

出力
\[y(t) \]
Laplace変換
\[Y(s) \]
\[\frac{d}{dt} y(t) \] Laplace変換
\[s \, Y(s) \]
\[\frac{d^2}{dt^2} y(t) \] Laplace変換
\[s^2 \, Y(s) \]
2階微分方程式で表されるシステムの伝達関数(2)

入力 \(x(t) \) → システム → 出力 \(y(t) \)

\[
\begin{align*}
\text{システム}

b_1 s \ X(s) + b_0 \ X(s) &= s^2 \ Y(s) + a_1 s \ Y(s) + a_0 \ Y(s) \\
(b_1 s + b_0) \ X(s) &= (s^2 + a_1 s + a_0) \ Y(s)
\end{align*}
\]

\[G(s) = \frac{Y(s)}{X(s)} = \frac{b_1 s + b_0}{s^2 + a_1 s + a_0} \]
2階微分方程式で表されるシステムのインパルス応答

入力
\(x(t) = \delta(t) \)

システム

出力
\(y(t) \)

\[X(s) = 1 \]

\[G(s) = \frac{b_1 s + b_0}{s^2 + a_1 s + a_0} \]

\[Y(s) = G(s) \times X(s) \]

\[Y(s) = \frac{b_1 s + b_0}{s^2 + a_1 s + a_0} \]

\(p_1, p_2 \) は特性方程式（伝達関数の分母が0）
\(s^2 + a_1 s + a_0 = 0 \)

の根
特性方程式が異なる実根をもつ場合
（p_1, p_2 が異なる実根の場合）

$$Y(s) = \frac{b_1 s + b_0}{(s-p_1)(s-p_2)}$$

$$= \frac{K_1}{s-p_1} + \frac{K_2}{s-p_2}$$

$$y(t) = K_1 \exp(p_1 \cdot t) + K_2 \exp(p_2 \cdot t)$$

安定性の必要十分条件
$$p_1 < 0 \text{ かつ } p_2 < 0$$

K_1, K_2 は定数。

演習問題: K_1, K_2 の値を b_1, b_0, p_1, p_2 で表せ。
特性方程式が重根をもつ場合
（p1=p2, 実根の場合）

\[Y(s) = \frac{b_1 s + b_0}{(s-p_1)^2} \]

\[= \frac{L_1}{s-p_1} + \frac{L_2}{(s-p_2)^2} \]

\[y(t) = L_1 \exp(p_1 \cdot t) + L_2 \cdot t \cdot \exp(p_1 \cdot t) \]

安定性の必要十分条件
\[p_1 (=p_2) < 0 \]

L1, L2 は定数。
演習問題: L1, L2 の値を b1, b0, p1, p2 で表せ。
特性方程式が複素共役根をもつ場合
（p1, p2 が複素共役根の場合）

\[Y(s) = \frac{b_1 s + b_0}{(s-a)^2 + b^2} \]

\[= \frac{M_1 (s-a)}{(s-a)^2 + b^2} + \frac{M_2 b}{(s-a)^2 + b^2} \]

\[y(t) = M_1 \exp(a \cdot t) \cos(b t) + M_2 \exp(a \cdot t) \sin(b t) \]

\[= M \exp(a \cdot t) \cos(b t + \theta) \]

安定性の必要十分条件

\[a < 0 \]

p1 = a + j b
p2 = a - j b
M1, M2 は定数。

演習問題: M1, M2 の値をb1, b0, a, b で表せ。
2階微分方程式で表されるシステムの安定性の必要十分条件

\[G(s) = \frac{b_1 s + b_0}{s^2 + a_1 s + a_0} \]

\(p_1, p_2 \)を特性方程式（伝達関数の分母=0）

\[s^2 + a_1 s + a_0 = 0 \]

の根とすると、「

\(p_1, p_2 \)の実数部が負であること

が安定性の必要十分条件。

演習問題：「\(p_1, p_2 \)の実数部が負であること」

\(a_1 > 0 \)かつ \(a_0 > 0 \)

であることを示せ。
一般に、n階微分方程式で表されるシステムの安定性の必要十分条件は、特性方程式の根の全ての根の実数部が負であること。

特性方程式（伝達関数の分母=0）

\[s^n + a_{n-1}s^{n-1} + \ldots + a_1s + a_0 = 0 \]

の根の全ての根p₁, p₂, p₃, ..., pnの実数部が負であることが安定性の必要十分条件。

（注）伝達関数の分子は安定性には無関係
一般に n階微分方程式で表されるシステムの安定性の補足

$p_1, p_2, p_3, \ldots, p_n$ が特性方程式の異なる実根のとき

$$G(s) = \frac{b_m s^m + b_{m-1} s^{m-1} + \ldots + b_1 s + b_0}{(s-p_1)(s-p_2)(s-p_3) \ldots (s-p_n)}$$

$$= \frac{K_1}{s-p_1} + \frac{K_2}{s-p_2} + \frac{K_3}{s-p_3} + \ldots + \frac{K_n}{s-p_n}$$

インパルス応答 $g(t) = K_1 \exp(p_1 \cdot t) + K_2 \exp(p_2 \cdot t) + K_3 \exp(p_3 \cdot t) + \ldots + K_n \exp(p_n \cdot t)$
一般に、n階微分方程式で表されるシステムの安定性の必要十分条件は、特性方程式（伝達関数の分母=0）
\[s^n + a_{n-1} s^{n-1} + \cdots + a_1 s + a_0 = 0 \]
の根の全ての根 \(p_1, p_2, p_3, \ldots, p_n \) の実数部が負であることが安定性の必要十分条件。

このための \(a_{n-1}, a_{n-2}, \ldots, a_1, a_0 \) の必要十分条件は何か。

Routh-Hurwitz の安定判別

（注）5次以上の代数方程式の一般解は存在しない。数学者アーベル、ガロアによって証明された。
Maxwell と Routh

Maxwell (電磁気学のMaxwell の方程式で著名)とRouthはイギリスのCambridge 大学の同級生で首席を争ったライバル。19世紀後半に活躍。

Maxwell は制御の安定性の問題（一般のn階微分方程式の特性方程式の全ての根の実数部が負になる条件）が解けなかった。
懸賞問題（アダム賞）として出題した。

Routh がこの問題を解き、その内容を懸賞論文に応募した。
スイスの制御の研究者 Stodola は制御の安定性の条件が「特性方程式の全ての根の実数部が負になること」と見いだしたが、この問題が解けなかった。

同じ大学（スイス連邦工科大学 ETH の前身）の数学者 Hurwitz に相談し、Hurwitz はこの問題を解いた。

Routh がこの問題を解いてから10数年後のことである。両者ともRouth の結果を知らなかった。後にRouth, Hurwitz の結果は同等であることが証明された。

Routh, Hurwitz の計算アルゴリズムは制御工学のテキストを見てください。
早熟/悲運の天才 ガロア

エヴァリスト・ガロア（1811-1832, フランス）
論文をフランス学士院に提出、コーシーが紛失。再提出するも預かったフーリエが急死し紛失。一人の女性をめぐり決闘で敗れて死す（19才）
死後、その数学上の業績が認められる。

5次以上の方程式には、一般的な代数的解の公式は存在しない
美しい形で証明した
ジェロラモ・カルダーノ
Gerolamo Cardano 1501 - 1576

16世紀イタリアの数学者、医者、占星術師、賭博師、哲学者

1545年「偉大なる術（アルス・マグナ）」の著書で
3次方程式の解の公式、4次方程式の解法を示す。

タルタリアに3次方程式の解法を聞く（公開しないとの約束で）

4次方程式の解はカルダーノの弟子ルドヴィコ・フェラーリが解いたもの

3次方程式の解を示す際にはじめて虚数の概念を導入したのはカルダーノ
ニコロ・フォンタナ・”タルタリア”
Niccolò Fontana "Tartaglia"
1499-1557

● イタリアの数学者、工学者、測量士。
● ヴェネツィア共和国の簿記係でもあった。
● アルキメデスやユークリッドのイタリア語訳を含む多くの著書を著し、数学関係編集の分野で高く評価。
● 史上初めて数学による大砲の弾道計算を行った弾道学の祖。
● 彼の研究は、後にガリレオ・ガリレイによる落体の実験により検証された。
● 「タルタリア」は生後につけられた渾名。
制御工学　第8回

● 線形システムの安定判別

Nyquist の安定判別

安定なシステムをフィードバックをかけたとき、安定になるか不安定になるかを判別する。

ベクトル線図、ボーデ線図を使用
ラプラス変換の性質（補足）

$f(t)$ の L 時間遅れ は $F(s)$ に e^{-sL} をかける

$$F(s) = \int_{-\infty}^{\infty} f(t)\exp(-st)dt$$

$$e^{-sL}F(s) = \int_{-\infty}^{\infty} f(t-L)\exp(-st)dt$$
周波数伝達関数 $G(j\omega)$ と 伝達関数 $G(s)$

安定なシステム:
$G(j\omega), G(s)$ の両方が存在
$G(j\omega)$ は周波数応答法と結びつき 物理的な意味がある。
$G(s)$ には物理的な意味はない。
$G(s)$ で $s=j\omega$ とおけば $G(j\omega)$ が求まる。

不安定なシステム:
$G(s)$ は存在する。 $G(j\omega)$ は存在しない。
Harry Nyquist (AT&T, 1889-1976)

1927年、米国ベル研究所のHarold Blackにより、Negative Feedbackによる電子管増幅器が考案される。

出力から入力へのフィードバック量により増幅器が安定、不安定になることが経験される。

1932年、Nyquistによりこの問題が理論的に検討され、安定になるための条件が明らかになる。

電気通信の技術課題を解決するためのもの制御工学に取り入れられる。
Harry Nyquist

名前が残る多くの研究業績

Nyquist plot
Nyquist–Shannon sampling theorem
Nyquist frequency
Nyquist stability criterion
Nyquist ISI criterion
Johnson–Nyquist noise
フィードバックと安定性

安定なシステムにフィードバックをかける。
安定にも不安定にもなりうる。

不安定なシステムにフィードバックをかける。
安定にも不安定にもなりうる。
ナイキストの安定判別の問題設定（1）

安定なシステム $G(j\omega)$ にフィードバックをかける。

周波数伝達関数 $G(j\omega)$ から、フィードバックをかけたシステム全体の安定性を判定する。

システム全体は安定？
ナイキストの安定判別の問題設定（2）

周波数伝達関数 \(G(j\omega) \) は測定データ（ボーデ線図、またはベクトル線図）で与えられる。

システム全体は安定か？
Routh-Hurwitz 安定判別との関係

$G(jw)$が式（jwの有理多項式）で与えられたとき
$s=jw$ とおき $G(s)$ を得て、

$$\frac{Y(s)}{X(s)} = \frac{G(s)}{1+G(s)}$$

に対してRouth-Hurwitz の安定判別を適用。

安定なシステム $G(s)$

システム全体は安定？
Routh-Hurwitz 安定判別 の問題点(1)

G(s)が s の有理多項式でない場合R-H法は適用不可

例: $G(s) = K \exp(-sL), K>0, L>0$ のとき

$$\frac{Y(s)}{X(s)} = \frac{G(s)}{1+G(s)} = \frac{K \exp(-sL)}{1+K \exp(-sL)}$$

（注）安定のための必要十分条件は $K<1$ （後述）
Routh-Hurwitz 安定判別の問題点（2）

G(jω)が測定データのみで式で表されていない場合
R-H法は適用不可

例：G(jω) のボーデ線図またはベクトル線図の測定データとして与えられている場合

システム全体は安定か？
典型的システムの周波数特性
（ゲイン特性、位相特性）

多くの（安定な）システムでは周波数ωが大きくなるとゲイン|G(jω)|が小さくなる、位相∠G(jω)がマイナスの値で大きくなる。

ゲイン
20log|G|[dB]

位相
∠G

\[\cos(\omega t) \quad |G|\cos(\omega t + \angle G) \]

\[G(j\omega) \]
位相遅れ π の周波数でゲインが1の場合

ある周波数 $\omega = \omega_0$ で $\angle G(j\omega_0) = -\pi$ のとき
$|G(j\omega_0)| = 1$ の場合、フィードバックシステムは周波数 ω_0 で発振する。

$$\cos(\omega_0 t) \xrightarrow{G(j\omega)} \cos(\omega_0 t - \pi) = -\cos(\omega_0 t)$$

$$0 \xrightarrow{G(j\omega)} - \cos(\omega_0 t)$$
位相遅れπの周波数でゲインが1より小さい場合

ある周波数w=w₀で∠G(jω₀) = -π のとき
|G(jω₀)| < 1 の場合、フィードバックシステムは安定である。

\[
\begin{align*}
\cos(\omega t) & \quad \rightarrow \quad G(j\omega) \quad \rightarrow \quad A\cos(\omega t - \pi)
\end{align*}
\]

\[
\begin{align*}
K \cos(\omega t) & \quad \rightarrow \quad G(j\omega) \quad \rightarrow \quad -AK\cos(\omega t)
\end{align*}
\]

|A|<1
ある周波数 $\omega = \omega_0$ で $\angle G(j\omega_0) = -\pi$ のとき
$|G(j\omega_0)| > 1$ の場合、フィードバックシステムは不安定である。

\[
\begin{align*}
\cos(\omega_0 t) &\rightarrow G(j\omega) \\
A\cos(\omega_0 t - \pi) &= -A\cos(\omega_0 t)
\end{align*}
\]
ゲインの線形表記の場合の安定判別

ある周波数\(\omega = \omega_0\)で \(\angle G(j\omega_0) = -\pi\) のとき

(I) \(|G(j\omega_0)| < 1\) の場合、フィードバックシステムは安定である。

(II) \(|G(j\omega_0)| = 1\) の場合、安定限界である。

(III) \(|G(j\omega_0)| > 1\) の場合、不安定である。
ゲインのdB表記の場合の安定判別

ある周波数 $\omega = \omega_0$ で $\angle G(j\omega_0) = -\pi$ のとき

(I) $20 \log |G(j\omega_0)| < 0 \text{ dB}$ の場合、フィードバックシステムは安定である。

(II) $20 \log |G(j\omega_0)| = 0 \text{ dB}$ の場合、安定限界である。

(III) $20 \log |G(j\omega_0)| > 0 \text{ dB}$ の場合、不安定である。
ある周波数 $\omega = \omega_0$ で $\angle G(j\omega_0) = -\pi$ のとき
$20 \log |G(j\omega_0)| < 0 \text{ dB}$ の場合、フィードバックシステムは安定である。
ある周波数\(\omega = \omega_0\)で \(\angle G(j\omega_0) = -\pi\) のとき
20 \log |G(j\omega_0)| = 0 dB の場合、フィードバックシステムは安定限界である。
ある周波数 $\omega = \omega_0$ で $\angle G(j\omega_0) = -\pi$ のとき、20 log $|G(j\omega_0)| > 0$ dB の場合、フィードバックシステムは不安定である。
ある周波数 $\omega = \omega_0$ で $\angle G(j\omega_0) = -\pi$ のとき
$|G(j\omega_0)| < 1$ の場合、
フィードバックシステムは安定である。

$G(j\omega)$ のベクトル線図が
(-1, 0) の内側を通るととき
フィードバックシステムは安定。
ある周波数 $\omega = \omega_0$ で $\angle G(j\omega_0) = -\pi$ のとき $|G(j\omega_0)| = 1$ の場合、フィードバックシステムは安定限界である。

$G(j\omega)$ のベクトル線図が $(-1, 0)$ 上を通るときフィードバックシステムは安定限界。
ある周波数 $\omega = \omega_0$ で $\angle G(j\omega_0) = -\pi$ のとき
$|G(j\omega_0)| > 1$ の場合、フィードバックシステムは不安定である。

$G(j\omega)$ のベクトル線図が $(-1, 0)$ の外側を通るときフィードバックシステムは不安定。
位相遅れが π までにならないとき

$\angle G(j\omega_0) = -\pi$ なる ω_0 が存在しないとき
フィードバックシステムは安定である。

例: $G(j\omega) = \frac{K}{1+j\omega T}$ のとき

例: 位相線図、ベクトル線図が次のような形をしているとき
2次システムのステップ応答

入力

出力（ステップ応答）

2次LPF
2次系システムのステップ応答

伝達関数

\[G(s) = \frac{a_2}{s^2 + a_1s + a_2} \]

\[\left(a_1 = \frac{1}{Q\sqrt{R_1R_2C_1C_2}}, a_2 = \frac{1}{R_1R_2C_1C_2} \right) \]

ステップ応答 \(Y(s) \)は

\[Y(s) = G(s) \times \frac{1}{s} = \frac{a_2}{s(s^2 + a_1s + a_2)} \]

ステップ応答 \(y(t) \)を求めるには分母の根を求めて
因数分解し、この式を部分分数分解する。

\[s^2 + a_1 s + a_2 = 0 \] の根 \(s_1, s_2 \)

\[S_1, S_2 = \frac{-a_1 \pm \sqrt{a_1^2 - 4a_2}}{2} = -\frac{a_1}{2} \pm \frac{\sqrt{a_1^2 - 4a_2}}{2} \]
①複素共役根の場合

\[S_1, S_2 = -\frac{a_1 \pm \sqrt{a_1^2 - 4a_2}}{2} \] において、\(a_1^2 < 4a_2 \)のとき

\[\sigma = \frac{a_1}{2}, \alpha = \frac{\sqrt{4a_2 - a_1^2}}{2} \] とおくと、共役複素根は\(\sigma \pm j\alpha \)である。

このときのステップ応答

\[Y(s) = \frac{a_2}{s(s-(\sigma + j\alpha))(s-(\sigma - j\alpha))} \]

\[y(t) = \frac{a_2}{\sigma^2 + \alpha^2} \left\{ 1 - \frac{\sqrt{\sigma^2 + \alpha^2}}{\alpha} e^{\sigma t} \sin(\alpha t + \phi) \right\}, \tan \phi = -\frac{\alpha}{\sigma} \]

\(\sigma < 0 \)ならば振動収束
\(\sigma = 0 \)ならば振動
\(\sigma > 0 \)ならば振動発散
② 重根の場合

\[
S_1, S_2 = -a_1 \pm \sqrt{a_1^2 - 4a_2} \]
において、\(a_1^2 = 4a_2 \) のとき

このとき重根 \(S_n \) をもつので

\[
Y(s) = \frac{a_2}{s(s - S_n)}
\]
この式をラプラス逆変換する

\[
y(t) = \frac{a_2}{s^2} \left\{ e^{-s_n t} (1 - s_n t) \right\}
\]

安定であるには \(S_n < 0 \) であればよい。
③ 異なる実根をもつ場合

\[S_1, S_2 = \frac{-a_1 \pm \sqrt{a_1^2 - 4a_2}}{2} \]
において、\[a_1^2 > 4a_2 \]のとき

異なる実根 \(S_1, S_2 \)をもつとすると、

\[Y(s) = \frac{a_2}{s(s-s_1)(s-s_2)} = \frac{a_2}{s_1-s_2} \left\{ \frac{1}{s(s-s_1)} - \frac{1}{s(s-s_2)} \right\} \]

この式をラプラス逆変換する

\[y(t) = \frac{a_2}{s_1-s_2} \left\{ \frac{1}{s_2} (1-e^{s_2t}) - \frac{1}{s_1} (1-e^{s_1t}) \right\} \]

安定であるには \(s_1, s_2 < 0 \)
ステップ応答の諸特性

立ち上がり時間: \(T_{r} \) 行き過ぎ時間: \(T_{p} \)
遅れ時間: \(T_{d} \) オーバーシュート: \(A_{\text{max}} \)
整定時間: \(T_{s} \)
制御工学　第9回

安定度：安定なシステムをフィードバックをかけて安定になった場合、
「どの程度安定性の余裕があるか」
ゲイン余裕・位相余裕
ベクトル線図、ボーデ線図を用いる。
Nyquist の安定判別
例題

G(s) = K \exp(-sL), L > 0 のとき、下図のフィードバックシステムが安定になるためのK(>0)の条件を求めよ。

入力 \[f(t) \]
\[- \]
\[K \exp(-sL) \]
\[\]
出力 \[K f(t-L) \]

注: G(s)が \(s \)の有理多項式でない場合R-H法は適用不可

\[
\frac{Y(s)}{X(s)} = \frac{G(s)}{1+G(s)} = \frac{K \exp(-sL)}{1+K \exp(-sL)}
\]
ゲイン
$20\log|G|[\text{dB}]$

位相
$\angle G$

$\angle G = -\omega L$

ゲイン
$0[\text{dB}]$

位相
0

K exp(-j\omega L) のボーデ線図

ゲイン
$0[\text{dB}]$

位相
0

ゲイン
$0[\text{dB}]$

位相
0

K < 1
(安定)

K = 1
(安定限界)

K > 1
(不安定)

線形位相
Linear Phase
$K \exp(-j\omega L)$ のベクトル線図

安定

安定限界

不安定

$K < 1$

$K = 1$

$K > 1$
フィードバック・システムの安定度
（ゲイン余裕、位相余裕）

安定なシステムG(jω)にフィードバックをかける。
ある周波数ω=ω₀で∠G(jω₀) = −π のとき
|G(jw₀)| < 1 の場合、
フィードバックシステムは安定である。

システム全体は安定の場合、「どの程度」安定か？
ある周波数 $\omega = \omega_0$ で $\angle G(j\omega_0) = -\pi$ のとき
20 log $|G(j\omega_0)| < 0$ dB の場合、フィードバックシステムは安定である。

ゲイン余裕 (Gain Margin) とボーデ線図
位相余裕（Phase Margin）
とボーデ線図
ある周波数 \(w = w_1 \) で
\[
20 \log |G(j\omega_1)| = 0 \text{ dB}
\]
\(\angle G(j\omega_1) > -\pi \) のとき
フィードバックシステムは安定である。

ゲイン

ゲイン
20log|G|[dB]

位相

位相
\(\angle G \)

\(-\pi \)

\(-\theta \)

位相余裕

n-\theta [rad]
ゲイン余裕（Gain Margin）とベクトル線図

ゲイン余裕 = -20 log ρ [dB]

G(jω) のベクトル線図が (-1, 0) の内側を通るときフィードバックシステムは安定。
位相余裕 (Phase Margin) と ベクトル線図

G(jω) のベクトル線図で 単位円上を交差する点で
位相が−π まで回っていなければ フィードバックシステムは安定。

位相余裕
\[\phi = \pi + \angle G(j\omega_1) \]