2016 International Symposium on **VLSI Design, Automation and Test** The ball of the ba **DAC Linearity Improvement Algorithm** With Unit Cell Sorting **Based on Magic Square Masashi Higashino** Shaiful Nizam Mohyar, Haruo Kobayashi **Division of Electronics and Informatics Gunma University, Japan** Universiti Malaysia Perlis, Malaysia

26 April 2016

- Research Objective
- Current Steering DAC
- What is Magic Square ?
- Proposed Algorithm
- Simulation Results
- Conclusion

- Current Steering DAC
- What is Magic Square ?
- Proposed Algorithm
- Simulation Results
- Conclusion

Research Background

- Demand for DAC in communication systems
 - High linearity
 - High spurious free dynamic range (SFDR)

Our Approach

- Unary DAC linearity improvement
 - Unit cell sorting algorithm
 - Based on Magic Square -
 - Digital method No analog part modification

OUTLINE

Research Objective

- Current Steering DAC
- What is Magic Square ?
- Proposed Algorithm
- Simulation Results
- Conclusion

Circuit and Features of

- **Unary Current-Steering DAC**
- Identical current sources
- Small glitch
- Inherent monotonicity
- High speed

- Large circuits
 - Decoder
 - Many switches and current sources

16 VLSI-07/40 **Operation of Current Steering DAC (1)**

 $V_{out} = R_L I_1$

Operation of Current Steering DAC (2)

Digital input = 1, 1 current source. " = 2, 2 current sources.

 $V_{out} = R_L(I_1 + I_2)$

9/40 Operation of Current Steering DAC (3)

 $V_{out} = R_L(I_1 + I_2 + \dots + I_7)$ $I_1 = I_2 = \dots = I_6 = I_7$

DAC is perfectly linear

(2016 VLSI-10/40

Conventional Unary DAC Decoder

Operation of Unary DAC Decoder 6 VLSI-11/40

Example 1

- Digital binary input (0010)
 The manufactor of a constant of
 - Thermometer code (0000 0000 0000 0011)
 - 2 current cells turn on.

Operation of Unary DAC Decoder 6 VLS 12/40

Example 2

Digital binary input (0011)
 Thermometer code (0000 0000 0000 0111)
 3 current cells turn on.

OUTLINE

Research Objective

Current Steering DAC

A. R. LANDINGSON, LANDINGSON,

- What is Magic Square ?
- Proposed Algorithm
- Simulation Results
- Conclusion

What is Magic Square ?

- Classical mathematics
- Origin from Chinese academia
- "Constant sum" characteristics
- Varieties of magic squares

3x3 魔方陣

4	9	2
3	5	7
8	1	6

魔方陣 is Good balance

Features of Magic Square

- Constant Sum
 - Row, column, diagonal

OUTLINE

Research Objective

Current Steering DAC

• What is Magic Square ?

- Proposed Algorithm
- Simulation Results

Conclusion

Unit Current Source Mismatch Problem

17/40

In practice, current sources have mismatches. DAC becomes non-linear.

Possibility of Using Magic Square

- Semiconductor devices have random and systematic mismatches
- Changing the switching order
 Cancellation of mismatch effects
- We propose magic square algorithm

18/40

<

Inspired New Algorithm

19/40

• Unit current source selection-order change algorithm

- Mismatch effect cancellation

CPU => input test code to unary-DAC cells
 Measurement circuit => order of current source values

22/40

Measure Order of Current Cells

1st Step

- Measure the order of current cell values by a current comparator.
- Not need accurate value measurement.

4-bit case

Unit Current Source Sorting

2nd step

23/40

Sort and store the measured order of the unit current cell values into memory.

24/40

Unit Current Source Sorting

2nd step

- Sort current source cells ascendingly.
- Store their information of cells number and value into memory.

•Re-sort of current source values based on magic square

26/40

Current Source Sorting Based on Magic Square (1)

3rd step

- Re-sorted of current source values based on magic square
- Store its info in decoder look-up table

Current Source Sorting Based on Magic Square (2)

Digital binary input (0001)
 1 current cells turn on

I_1	I_2	I_3	I_4
I_5	I_6	I_7	I_8
I_9	I_{10}	I ₁₁	I_{12}
I_{13}	I_{14}	I_{15}	I_{16}

Current Source Sorting Based on Magic Square (3)

Digital binary input (0010)
 2 current cells turn on

Current Source Sorting Based on Magic Square (4)

Digital binary input (0011)
 3 current cells turn on

Current Source Sorting Based on Magic Square (5)

Digital binary input (0100)
 4 current cells turn on

Store switching sequence based on magic square into programmable decoder.

LUT-Magic Square Decoder

- Magic square switching sequence is stored in decoder
- Cancel mismatch effect

OUTLINE

Research Objective

Current Steering DAC

• What is Magic Square ?

Proposed Algorithm

Simulation Results

Conclusion

Simulation Conditions

- MATLAB simulation
- 8-bit unary DAC
 - Static performance (INL, DNL)
 - Dynamic performance (SFDR)
- Compared two methods
 - Conventional thermometer-code decoder usage
 - Proposed magic-square-based algorithm

Mismatch of current sources

- Current sources have average of value 1.0
- Random number between -1 < mismatch < +1 (uniform distribution)

Simulation Result

Simulation Result

36/40

- Static Performance DNL -

Simulation Result

37/40

• SFDR improvement by 7 dB

OUTLINE

Research Objective

Current Steering DAC

• What is Magic Square ?

- Proposed Algorithm
- Simulation Results

Conclusion

Conclusion

39/40

Unary DAC linearity improvement

- Cancel unit current cell mismatch effects
- Unit current cell selection algorithm
 - Digital method
- Based on magic square
- Measurement of the order of current cell values
- MATLAB simulation
 - INL, DNL improvement

at the center of the input range.

- SFDR improvement

Final Statement

A. R. MARINESSER, MARINESSER, MARINESSER, MARINESSER, MARINESSER, MARINESSER, MARINESSER, MARINESSER, MARINESSE

温故知新 Classical mathematics can contribute modern technology.

