Analysis and Design of Operational Amplifier Stability Based on Routh-Hurwitz Method

〇王建龍

Gopal Adhikari 小林春夫 築地伸和 平野繭 栗原圭汰 群馬大学大学院 理工学府電子情報部門

長浜顕仁 野田一平 吉井宏治 リコー電子デバイス(株)

Gunma University Kobayashi Lab

- Research Objective & Background
- Stability Criteria
 - Nyquist Criterion and Bode Plot
 - Routh-Hurwitz Criterion
- Proposed Method

Ex.1: Two-stage amplifier with C compensation Ex.2: Two-stage amplifier with C, R compensation Ex.3: Three-stage amplifier with C compensation

Discussion & Conclusion

Research Objective & Background

• Stability Criteria

- Nyquist Criterion and Bode Plot
- Routh-Hurwitz Criterion

Proposed Method

Ex.1: Two-stage amplifier with C compensation Ex.2: Two-stage amplifier with C, R compensation Ex.3: Three-stage amplifier with C compensation

Discussion & Conclusion

Research Background (Stability Theory)

Electronic Circuit Design Field

- Bode plot (>90% frequently used)
- Nyquist plot (源代裕治、電子回路研究会 2015年7月)

Control Theory Field

- Bode plot
- Nyquist plot
- Nicholas plot
- Routh-Hurwitz stability criterion
 - Very popular in control theory field but rarely seen in electronic circuit books/papers
- Lyapunov function method

We were NOT able to find out any electronic circuit text book which describes Routh-Hurwitz method for operational amplifier stability analysis and design !

None of the above describes Routh-Hurwitz. Only Bode plot is used.

Control Theory Text Book

Most of control theory text books describe Routh-Hurwitz method for system stability analysis and design !

Our proposal

For

Analysis and design of operational amplifier stability

Use Routh-Hurwitz stability criterion

We can obtain

Explicit stability condition for circuit parameters

(which can NOT be obtained only with Bode plot).

Research Objective & Background

- Stability Criteria
 - Nyquist Criterion and Bode Plot
 - Routh-Hurwitz Criterion

Proposed Method

Ex.1: Two-stage amplifier with C compensation Ex.2: Two-stage amplifier with C, R compensation Ex.3: Three-stage amplifier with C compensation

• Discussion & Conclusion

Stability of Linear Time-Invariant System

Stability Criteria of Linear Feedback System

Problem:

Feedback system is stable or not ?

• Open-loop frequency characteristics of $fA(j\omega)$

Routh-Hurwitz stability criterion

Research Objective & Background

- Stability Criteria
 - Nyquist Criterion and Bode Plot
 - Routh-Hurwitz Criterion

Propo Ex.1: Ex.2: 1 **Fx**.3:

nplifier with plifier with mplifier w

ation Insation sation

Harry Nyquist Hendrik Wade Bode 1889-1976 (Sweden) 1905-1982 (蘭)

Bode Plot (Gain & Phase vs Freq.)

Open-loop frequency characteristics of $fA(j\omega)$

Used for frequency characteristics, stability check, gain & phase margins

Phase Margin from Bode Plot

 ω_1 : gain crossover frequency

Phase margin : $PM = 180^0 + \angle fA(\omega = \omega_1)$

Bode plot is useful, but it does NOT show explicit stability conditions of circuit parameters.

Research Objective & Background

Stability Criteria

- Nyquist Criterion and Bode Plot
- Routh-Hurwitz Criterion

Proposed Method

Ex.1: Two-stage amplifier with C compensation Ex.2: Two-stage amplifier with C, R compensation Ex.3: Three-stage amplifier with C compensation

Discussion & Conclusion

Transfer Function and Stability

- Transfer function of closed-loop system $G(s) = \frac{A(s)}{1 + fA(s)} = \frac{N(s)}{D(s)}$
- Suppose
- $N(s) = b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0$ $D(s) = a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0$

J. Maxwell

A. Stodola

• System is stable if and only if Maxwell and Stodola found out !! real parts of all the roots s_p of the following are negative:

Characteristic equation $D(s) = a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0 = 0$

To satisfy this, what are the conditions for $a_n, a_{n-1}, \dots, a_1, a_0$?

Routh and Hurwitz solved this problem independently !!

Routh and Hurwitz

Great Mathematicians !

Edward Routh 1831- 1907(英) Adolf Hurwitz 1859 - 1919(独)

1876

Routh test

1895

Hurwitz matrix

Very different algorithms, but later it was proved that both are the same results.

Routh Stability Criterion

Characteristic equation:

$$D(s) = a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0 = 0$$

Sufficient and necessary condition:

(i) $a_i > 0$ for i = 0, 1, ..., n

(ii) All values of Routh table's first columns are positive.

 S^n a_n a_{n-4} a_{n-6} a_{n-2} ... S^{n-1} a_{n-3} a_{n-5} a_{n-1} a_{n-7} ... S^{n-2} $b_1 = \frac{a_{n-1}a_{n-2} - a_na_{n-3}}{a_{n-1}}$ $b_2 = \frac{a_{n-1}a_{n-4} - a_n a_{n-5}}{a_{n-1}}$ b_3 b_4 • • • $c_1 = \frac{b_1 a_{n-3} - a_{n-1} b_2}{b_1}$ $c_2 = \frac{b_1 a_{n-5} - a_{n-1} b_3}{b_1}$ S^{n-3} C_3 C_4 • • • ÷ ÷ ÷ ÷ ÷ ÷ S^0 a_0

Routh table

Mathematical test

Determine whether given polynomial has all roots in the left-half plane.

- Research Objective & Background
- Stability Criteria
 - Nyquist Criterion and Bode Plot
 - Routh-Hurwitz Criterion
- Proposed Method
 - Ex.1: Two-stage amplifier with C compensation Ex.2: Two-stage amplifier with C, R compensation Ex.3: Three-stage amplifier with C compensation
- Discussion & Conclusion

Amplifier Circuit and Small Signal Model

Open-loop transfer function from small signal model

$$A(s) = \frac{v_{out}(s)}{v_{in}(s)} = A_0 \frac{1 + b_1 s}{1 + a_1 s + a_2 s^2}$$

$$b_1 = -\frac{C_r}{G_{m2}}$$

$$A_{0} = G_{m1}G_{m2}R_{1}R_{2}$$

$$a_{2} = R_{1}R_{2}C_{2}\left[C_{1} + \left(1 + \frac{C_{1}}{C_{2}}\right)C_{r}\right]$$

$$a_{1} = R_{1}C_{1} + R_{2}C_{2} + (R_{1} + R_{2} + R_{1}G_{m2}R_{2})C_{r}$$

Small signal model

Feedback Configuration

Closed-loop transfer function:

$$\frac{V_{out}(s)}{V_{in}(s)} = \frac{A(s)}{1 + fA(s)} = \frac{A_0(1 + b_1 s)}{1 + fA_0 + (a_1 + fA_0b_1)s + a_2 s^2}$$

f = 1

Set parameter θ :

$$\theta = a_1 + f A_0 b_1$$

Necessary and sufficient stability condition based on R-H criterion

$$\Rightarrow \theta > 0$$

$$f = \frac{R_2}{R_1 + R_2}$$

$$\Rightarrow R_1C_1 + R_2C_2 + (R_1 + R_2)C_r + (G_{m2} - fG_{m1})R_1R_2C_r > 0$$

Explicit stability condition of parameters

Verification with SPICE Simulation

Consistency of Bode Plots and R-H Results

Consistency of Transient Analysis and R-H Results

23/36

- Research Objective & Background
- Stability Criteria
 - Nyquist Criterion and Bode Plot
 - Routh-Hurwitz Criterion
- Proposed Method

Ex.1: Two-stage amplifier with C compensation Ex.2: Two-stage amplifier with C, R compensation Ex.3: Three-stage amplifier with C compensation

Discussion & Conclusion

Amplifier Circuit and Small Signal Model

Open-loop transfer function:

$$A(s) = \frac{v_{out}(s)}{v_{in}(s)} = A_0 \frac{1 + d_1 s}{1 + a_1 s + a_2 s^2 + a_3 s^3}$$

$$A_0 = G_{m1}G_{m2}R_1R_2$$

 $d_1 = -\left(\frac{C_r}{G_{m2}} - R_r C_r\right)$

$$a_{1} = R_{1}C_{1} + R_{2}C_{2} + (R_{1} + R_{2} + R_{r} + R_{1}R_{2}G_{m2})C_{r}$$

$$a_{2} = R_{1}R_{2}(C_{2}C_{r} + C_{1}C_{2} + C_{1}C_{r}) + R_{r}C_{r}(R_{1}C_{1} + R_{2}C_{2})$$

 $a_3 = R_1 R_2 R_r C_1 C_2 C_r$

Amplifier circuit

Small signal model

Feedback Configuration

Closed-loop transfer function:

 $\frac{V_{out}(s)}{V_{in}(s)} = \frac{A(s)}{1 + fA(s)} = \frac{A_0(1 + d_1s)}{1 + fA_0 + (a_1 + fA_0d_1)s + a_2s^2 + a_3s^3}$

f = 1

Set parameter φ :

 $\varphi = a_1 + f A_0 d_1$

 $= R_1 C_1 + R_2 C_2 + (R_1 + R_2 + R_r) C_r + (G_{m2} - f_{m1} + f_{m1} G_{m1} R_r) R_1 R_2 C_r$

Necessary and sufficient stability condition based on R-H criterion

 $\varphi > 0$ & b_1 (parameter of Routh stable) > 0

 $R_1C_1 + R_2C_2 + (R_1 + R_2 + R_r)C_r + (G_{m2} - fG_{m1} + fG_{m1}G_{m2}R_r)R_1R_2C_r > 0$

$$\frac{(a_1 + fA_0d_1)a_2 - a_3(1 + fA_0)}{a_2} > 0$$

Explicit stability condition of parameters

Verification with SPICE Simulation

	Parameter values								R-H criterion		Bode plot
case	<i>R</i> ₁	С1	<i>R</i> ₂	С2	G _{m1}	<i>G</i> _{<i>m</i>2}	<i>R</i> _r	C _r	φ	b_1	SPICE simulation
(1)	115 <i>k</i>	5 <i>f</i>	100k	80 <i>f</i>	9m	5 <i>m</i>	5	0.5p	< 0	< 0	unstable
(2)	50 <i>k</i>	5 <i>f</i>	10 <i>k</i>	10 <i>f</i>	9 <i>m</i>	8m	2	0.2p	< 0	< 0	unstable
(3)	150k	5 <i>f</i>	100k	10 <i>f</i>	9 <i>m</i>	8 <i>m</i>	1	0.8 <i>p</i>	< 0	< 0	unstable
(4)	110 <i>k</i>	10 <i>f</i>	10 <i>k</i>	3 <i>f</i>	0.01	8m	5	0.5 <i>f</i>	≈ 0	≈ 0	critical
(5)	115 <i>k</i>	10 <i>f</i>	100 <i>k</i>	3 <i>f</i>	0.01	8 <i>m</i>	5	0.5 <i>f</i>	≈ 0	≈ 0	critical
(6)	150 <i>k</i>	8 <i>f</i>	100k	50 <i>f</i>	7 <i>m</i>	8 <i>m</i>	10	0.6 <i>p</i>	> 0	> 0	stable
(7)	100 <i>k</i>	8 <i>f</i>	80 <i>k</i>	50 <i>f</i>	6 <i>m</i>	8 <i>m</i>	5	0.6 <i>p</i>	> 0	> 0	stable
(8)	200k	5 <i>f</i>	150k	10 <i>f</i>	5m	7 <i>m</i>	2.5	0.6p	> 0	> 0	stable

Consistency of Bode Plots and R-H Results

Consistency of Transient Analysis and R-H Results

- Research Objective & Background
- Stability Criteria
 - Nyquist Criterion and Bode Plot
 - Routh-Hurwitz Criterion
- Proposed Method

Ex.1: Two-stage amplifier with C compensation Ex.2: Two-stage amplifier with C, R compensation Ex.3: Three-stage amplifier with C compensation

Discussion & Conclusion

Three-stage Amplifier (3 poles)

Proposed method can be applied in a similar manner.

31/36

Research Objective & Background

• Stability Criteria

- Nyquist Criterion and Bode Plot
- Routh-Hurwitz Criterion

Proposed Method

Ex.1: Two-stage amplifier with C compensation Ex.2: Two-stage amplifier with C, R compensation Ex.3: Three-stage amplifier with C compensation

Discussion & Conclusion

Discussion of Proposed Method

Especially effective for

Multi-stage opamp (high-order system)

Limitation

Explicit transfer function with polynomials of *s* has to be derived.

Conclusion

- Proposal of Routh-Hurwitz method usage for analysis and design of operational amplifier stability
- Explicit circuit parameter conditions can be obtained for feedback stability.
- Consistency with Bode plot method has been confirmed with SPICE simulation.

Proposed method can be used with conventional Bode plot method.

Future work:

Relationship: θ or φ with gain and phase margins

Final Statement

- Control theory is theoretical basis of analog circuit design.
- "Feedback" is the most important concept there.

James Watt 1736 - 1819 Nobert Wiener 1894 - 1964 Harold Black 1898-1983 John Ragazzini 1912-1988 The authors would like to thank Prof. Toshiyuki Kitamori Prof. Hiroshi Tanimoto and Dr. Yuji Gendai for stimulating and valuable comments.

Thank you

for your kind attention!

