第7回電気学東京支部会栃木·群馬支所合同研究発表会 足利工業大学(2017/3/2,3)

高信頼・低特性オン抵抗 100VデュアルRESURF LDMOS のスイッチング損失の検討

<u>小島潤也</u> 松田順一 築地伸和 神山雅貴 小林春夫 群馬大学

ETG-17-66

ETT-17-66

Kobayashi Lab

アウトライン

- 研究背景•目的
- 従来型·提案型LDMOS構造
- シミュレーション結果
 - I_{DS}-V_{DS}特性
 - ブレークダウン特性
 - 正孔電流密度と電界形状
 - オン抵抗-耐圧特性
- 構造の解析・性能評価
 - FOM (R_{on}Q_g)
 - 損失の周波数特性
- まとめ

アウトライン

- 研究背景•目的
- 従来型·提案型LDMOS構造
- シミュレーション結果 - IDS-VDS特性 - ブレークダウン特性 - 正孔電流密度と電界形状 - オン抵抗-耐圧特性 • 構造の解析・性能評価 - FOM (R_{on}Q_a) - 損失の周波数特性 まとめ

研究背景·目的

LDMOS (Laterally Diffused MOS)

・横方向拡散MOS
 ゲート・ドレイン間の電界強度を緩和する構造
 耐圧が高い⇒高電圧を印加可能

・パワーMOSの一種

電源回路のスイッチングなどに使用

集積型中高耐圧 (100V) <mark>車載用LDMOS</mark> に注目

信頼性:車載用LDMOS>民生用LDMOS

- インパクトイオン化
- **↓** Kirk効果
 - 電流增大(Current Expansion: CE)

※ 電気学会 電子デバイス·半導体電力変換合同研究会, EDD-16-071,SPC-16-158, (2016年11月) で発表

アウトライン

- 研究背景•目的
- 従来型·提案型LDMOS構造
- シミュレーション結果 - IDS-VDS特性 - ブレークダウン特性 - 正孔電流密度と電界形状 - オン抵抗-耐圧特性 • 構造の解析・性能評価 - FOM (R_{on}Q_a) - 損失の周波数特性 まとめ

従来型と提案型のLDMOS構造

提案型 低オン抵抗化

アウトライン

- 研究背景•目的
- 従来型·提案型LDMOS構造
- シミュレーション結果
 - I_{DS}-V_{DS}特性
 - ブレークダウン特性
 - 正孔電流密度と電界形状
 - オン抵抗-耐圧特性
- 構造の解析・性能評価
 FOM (R_{on}Q_g)
 損失の周波数特性
- まとめ

従来型と提案型のI_{DS}-V_{DS}特性の比較⁹¹⁷

	従来型	提案型
電流増大の抑制	×	0
特性オン抵抗R _{on} A (A=width×pitch)	178mΩmm² (A=0.2×5.5µm²)	<mark>150</mark> mΩmm² (A=0.2×5.5µm²)

低信頼性

高信頼性

(広いSOA: Safe Operation Area)

低オン抵抗化

従来型と提案型のBV_{DS}の比較

正孔電流密度と電界形状の比較

11/17

インパクトイオン化による正孔電流 ∝ 電子電流×電界×exp(-A/電界)

	従来型	提案型
ゲート端周りとドリフト領域の正孔電流密度 (A,B)	高	低
ドレイン端周りの電界の大きさ (C)	高低	
	_	

インパクトイオン化の発生率
高低
※デュアルRESURF構造による
(高ホットキャリア耐性)

オン抵抗-耐圧特性

アウトライン

- 研究背景·目的
- 従来型·提案型LDMOS構造
- シミュレーション結果

 I_{DS}-V_{DS}特性
 ブレークダウン特性
 正孔電流密度と電界形状
 オン抵抗-耐圧特性
- 構造の解析・性能評価

 FOM (R_{on}Q_g)
 損失の周波数特性

過渡解析

	従来型	提案型 -		
R _{on} A (mΩmm²)	178	150		
Q _g /A (nC/mm ²)	1.87	2.09	_,*	
スイッチング特性の性能指数 FOM (=R _{on} ×Q _g) (mΩnC)	332	312		
(Figure of Merit)				
※ FPによりミラー容量(電荷量Q _a) 大				

アウトライン

- 研究背景•目的
- 従来型·提案型LDMOS構造
- シミュレーション結果 - IDS-VDS特性 - ブレークダウン特性 - 正孔電流密度と電界形状 - オン抵抗-耐圧特性 • 構造の解析・性能評価 - FOM (R_{on}Q_a) - 損失の周波数特性
- まとめ

まとめ

(1) 高信頼性 (2) 最先端のR_{on}A-BV_{DS}特性 (3) 低スイッチング損失 の特性であるLDMOSを提案した

項目	従来型	提案型	
電流増大(CE)の抑制	×	0	⇒(1)
R _{on} A (mΩmm²)	170	150	⇒(2)
BV _{DS} (V)	124	128	⇒(2)
ブレークダウンの箇所	バルク	バルク	⇒(1)
ゲート端周りでの正孔電流密度	高	低	⇒(1)
ドレイン端周りの電界の大きさ	高	低	⇒(1)
$FOM(=R_{on} \times Q_g) (m\Omega nC)$	332	312	⇒(3)
スイッチング損失 (ex. f<400kHz: R _D =50MΩ, 0.1 <d<sub>ON<0.9)</d<sub>	大	<u>\</u> \] ⇒(3)

謝辞

本研究を進めるにあたり、3D TCADを貸していただいた アドバンスソフト社に深謝いたします。

この3D TCADは、国立研究開発法人科学技術振興機構 A-STEPプログラムの助成を受けてアドバンスソフト社で 開発されました。

3D TCADシミュレータ

3D TCADシミュレータ ··· Advance/DESSERT(β版) アドバンスソフト株式会社

・実物に近いモデルの使用

・実物を作らなくても良い

短時間で多くの構造の開発・評価

インパクトイオン化

インパクトイオン化(電離衝突)

高い電界によって加速された電子が 結晶格子との衝突によって電子・正孔 対を発生させる現象

インパクトイオン化による正孔電流 ∝電子電流×電界×exp(-A/電界)

A:定数

RESURF

pn接続による空乏層の縦と横方向電界の相互作用を利用

⇒横方向空乏層が拡張
⇒横方向の電界緩和

Q1. 測定回路(p.14)で、なぜ R_G =50k Ω 、 R_D =100M Ω なのか? 大きくないか?

A1. R_GとLDMOSの寄生容量Cとの時定数から、損失が計算で きるようにR_Gの値を調節した。また、LDMOSのドレインに低い 電圧を印加するために、R_Dを大きな値としている。今回の LDMOSは幅0.2µm、長さ6.8µmであり、これに合う抵抗を選ん でいる。

Q2. 提案LDMOSは、他のデバイスと違ってどんな特徴が あるのか? CoolMOSとはどう違うのか? A2. CoolMOSは耐圧600Vのように高耐圧が要求されるときに 使用する。LDMOSはCoolMOSよりも低耐圧の場合に使用する。