FBIRERESRREXHBEFKR-BEZERMERES ETG-17-62

RBFIFEKXE (2017/3/2,3) ETT-17-62

Study on Digital Multiplier
Architecture Using Square Law

BRERFEXRFR BEIFHH

. EFHR- MEKETOTS L
Q % 18&3E (SunYifei, YA vkE)
BFEXEE

GUNMA UNIVERSITY

Gunma University Kobayashi Lab

2017/3/5

OUTLINE

Research Background
Digital Multiplier Algorithm
Design of Multiply Circuit and Simulation Verification

Circuit Design Using Squaring Calculation Logic and

Simulation Verification
Compared with Each methods
Future Work

Conclusion

2/36

OUTLINE "

@® Research Background
Digital Multiplier Algorithm
Design of Multiply Circuit and Simulation Verification

Circuit Design Using Squaring Calculation Logic and
Simulation Verification

Compared with Each methods

Future Work
Conclusion

2017/3/5

4/36

Research Background

- Adder = Subtractor

Digital arithmetic devices { + Multiplier * Divider

DSPs, u Processors use several digital multipliers on a chip.

1 Requirements

Small scale
Low power
High speed

@ Digital multiplier hardware implementation algorithm
has been a research topic for 50 years.

@ Decrease of the multiplier scale is still a research topic .

2017/3/5

5/36

How Digital Multiplier Works

Decimal Binary
25 multiplicand 011001:25,, multiplicand
x 39 multiplicator x100111:39,, multiplicator
45 | 011001
‘ 011001
18 - Partial products 011001
15 — Partial products
+ 6] 000000
000000 AND gate
975 product
+011001 -
001111001111:975,, product

Calculation of the sum of partial products increases

2017/3/5

6/36

Purpose of Study

y5 y4 y3 y2 1 y0
0 // // // yd // //
" / /1
1 VavavVavAvavy,
' e /1
; Ay ayavAVav,
J 17\ 7/ 1717
3 7 7 7 7 7
YAy AVAYAV/Aa
x4 // // // // '/ ’/
AWAWAWSWA
x5
-JOO00C

p10 p9 p8 p7 p6 p5 p4 p3 p2

Composition of array digital multiplier

p1

p0

Multiplier (Using 2D array of full adders)
" Circuit size

* Power m=) BIG

Computation time

Ex: In 6bit X 6bit situation
6 X 6 =64 full adders are needed

!

Reduce

circuit size = power = computation time

7/36

OUTLINE

Research Background

@® Digital Multiplier Algorithm

Design of Multiply Circuit and Simulation Verification
and

Simulation Verification

Compared with Each methods

Future Work

Conclusion

2017/3/5

8/36

Investigated Multiplier Algorithm

Based on square law

1
AB = —[(A + B)? — (A% + B?)]
2 . .
@ Squaring 3 times

A+B (A + B)*> @ Addition twice
Subtraction once
+ 1 ¥ LUT X2 ®- | |
(] > operation can be realized
1bit i _bi i

) with a 1-bit left shift

A—T X LUT XY — Trmam] AB or ust .
+ | just interconnection change

B——+XLUT X3 |

o General Multiplier Algorithm
Realization circuit AB — A + A + o + A

Multiplier AXB
Number of additions : B times

What is Look Up Table (LUT)

A) A2

Address

Memory

X/

address

1

Data

No calculation

1
(2 m) ()
3 9

1

R

LUT —— F(X)

data
LUT Memory (ROM ,RAM)

9/36

(4)

9

Using LUT == Memory reference processing

100

10000

10000

!

Disadvantage Efficient

o

LUT processing =handled large number of bits = Large circuit size

10/36

OUTLINE

® Design of Multiply Circuit and Simulation Verification

2017/3/5

Improvement Plan of Implementation Circuit

A, B, A+B divide into upper bits and lower bits for calculation scale reduction

Come up with Divide & Conquer method

In 8 bit case : divide into

—

!

Cut LUT size

AB = %[(A + B)? — (A% + B?)]

J

- 4bit

J\

- 4bit

\

—

upper 4 bits
lower 4 bit

LUT size becoming smaller

11/36

12/36

Number of Bits Handled by LUT

Reduce required number of bits using Divide & Conquer

dis azss
A14 Az54
a a

5 s 5 4253
[= % [= 8
Q Q.
o o
4 |a 8 |
AH+ o 4 + o
(4bit) e (8bit) e
[=] [=]
[= % o
@ (1]

ag Ao

Size - |

Sire [T T eeeeeneens
16x8= 128 bit D7 Ds Ds Do 256 X 16, Dy5D14Dq3 Dy
AZ(8bit) = 4096 bit AZ(16bit)

The number of input bits is reduced by half » LUT size will be significantly reduced

Divide & Conquer Method Analysis

13/36

In 8 bit case (4 = 11001001 : 201,,)

AN

= 0O 020042 4

8bit x 8bit divide 4bit [Ay], [4;]
Calculated by each [Ay], [4;]

o T
1
0 »AH
b 0
11
@)
L0 w4,
R 1
A=11001001

Divided input, output values up and down

A=11001001
AH — 1100 . 1210
AL — 1001 . 910

‘ Conquer

A% = 10010000:144,
A% =1010001:814,
AyA;, =1101100:108,

14/36

Divide & Conquer Method Analysis

N
A% = A%(Nbit left shift) + AyA; ((E + 1)bit left shift) + A%

‘ N=8 bit situation

A? = A%(8bit left shift) + AyA;(5bit left shift) + A%

A% = 10010000
AyA; = 1101100

A% =1010001

A% =1001110111010001 : 404014,
(A% =201 x 201 = 40401)

A2 (8bit left shift) = 1001000000000000
Ay A, (5bit left shift) = 110110000000

A% =1010001

15/36

Divide & Conquer Method Circuit

Nbit

A(Nbit) — I x LuT x2— A%(2Nbit)
.

N/2+1Dbit

y x Left shift
H - Y
X LUT X? bt + 4

- j
Left shift
A — %bit +
— X LUT X2
AL %bit

N
A? = A% (Nbit left shift) + AyA, ((5 + 1)bit left shift) + A?

Using Divide & Conquer with X times, LUT size will decrease 2%times

Divide & Conquer Method Circuit (8 bit case)

AB

[1bit

16/36

AB

X 5bit P
— 1 [(A _|_ B)Z _ (AZ + BZ)] 1 4b|t Left shift (+)
2 > 8bit +
l X Llleb)'(t Leftshift |] ¥ [
|
2 |
. LUT
Need LUT for 16 bit XLUT X 5
5hit | =
x Abit Left shift Az
|
X LUT 17| 8ot o +
A Abit Left shift + -
X LUT X2 T\ |
5bit |
a bit Left shiflf
> 8bit | +
B - :Llji):tx Leftshifk + | . \
X LUT X2 - \\ |

becoming smaller

Right shift

Need LUT for 8 bit

RTL Simulation (8 bit X 8 bit)

600 ns 300 ns
|

p B G[17:0] ;j'f"-f-"l;' ' - \~ " apooo

p B A[7:0] f 0 ;: 5 : 200
p B B[7:0] ~ 0 ¥ [20 j 200

400 ns HOD ns
il L] i i i L] i i i i i I

G[1/:0] - 75 /300 10000

Al7:0] i . 1 00
B[/:0]

Input values A, B are changed every 100 ns and 200 ns.

G=A X B A, B: input
G : output.

17/36

18/36

OUTLINE

® Circuit Design Using Squaring Calculation Logic and
Simulation Verification

2017/3/5

Do NOT use LUT to Implement Square Law

ais

Q14

a3

Ap—~

(4bit)

I
lapooaQg ssalppy

Qo

Size
16 X 8= 128 bit

D, Dg Ds D,
A% (8bit)

A

(8bit)

Size

256 X 16
= 4096 bit

lopoo2a(Qg sSso.4ppy

Qazs5

Ar54

ajs53

Large size of LUT increases the overall circuit area

.

We have found that direct logic circuit Implementation of squaring can be simple.

19/36

20/36

Direct Squaring Calculation Logic Circuit

-4 X LUT x?
X LUT Xx? 1Dt —AB

g - + — Right shift
X LUT X3—

Input 5 bit
C Output 10 bit

direct squaring
+ calculation logic circuit

1bit
direct squaring — : ——AB
A ¢ calculation logic circuit | | Right shift
direct squaring H
B calculation logic circuit .
/v *%C=A+B
Input 4 bit
Output 8 bit

LUT part was replaced with squaring calculation circuit.

Input Output

3121110 Ji
0Of00O00O 0 0
11000 1 1/ 0
210010 4 0
3|00 1 1 9(0
40100 16| O
9101 0 1] 25 0
6/01 10 36 O
7/01 11 49| 0
81000 64 0
91001, 81 0
101010 100 O
11{101 1] 121, 0
12| 11 0 0| 144| 1
13| 110 1| 169| 1
14111 0] 196, 1
15|11 1 1] 225 1

Truth Table and Logic Expression

@)

—_ —- 00 = == = 2 OO0 000000

O
o
O

- 0O - 0= - 000-= = 000000
OO0 = = 0= 0 =0 == 0000 -+

O
w
O

O o—=0—=— 00000 0—=C 0 O

O - 000 —=000—=000=00mMN

O
O

OO0 000000000000 oo
- o -0 -0 -0 -0 —-=0—-=0—=00

21/36

O3 In the situation of output
equalto 1 , theinputare
0011, 0101, 1011, 1101

03 = 13121110

03 = I312I110

03 = [312I110

03 = I312I110

Write in a theoretical
simplification

03 = (12 & I11)I0
EXOR

Calculate the logic expression 00~07

The Layout of Direct Squaring Calculation Logic Circuit

A
B

A
B

Circuit creates individual logic expressions by the number of bits of input

=t

AND gate

3 >

OR gate

AD
Y
B

EXOR gate

-

NOT gate

Inout Output

A

- O |- o

Inout Output

A | B Y
0| 0 0
0 1 1
1 0 1
1 1 1
Inout Output
A | B Y
0| 0 0
0 1 1
1 0 1
1 1 0

Inout Output
A Y
0 1
1 0

22/36

23/36

Simulation Result

Input 4 bit X 4bit circuit

Using direct squaring calculation logic circuit was validated.

OUTLINE e

Research Background
Digital Multiplier Algorithm
Design of Multiply Circuit and Simulation Verification

Circuit Design Using Squaring Calculation Logic and
Simulation Verification

® Compared with Each methods
Future Work
Conclusion

2017/3/5

Comparison of Various Algorithms

25/36

times Adder times

70

60 /
50 //
40

30

e

/

4bit 8bit 16bit

20
10 //

24bit 32bit

— Formal multiple = Square law with D&C

Square law method » faster computation

48bit

64bit

Number of
required bits

1E+12

1E+10

100000000

1000000

10000

100

1

Number of bits of LUT

4bit 8hit 16bit 24bit 32hit
— Square law without D&C

= Square law with D&C

Using D&C reduces LUT size

26/36

OUTLINE

Research Background

Digital Multiplier Algorithm

Design of Multiply Circuit and Simulation Verification
Digital Multiplier Architecture Using Square Law and
Simulation Verification

Compared with Each methods

® Future Work

Conclusion

2017/3/5

Future Work

27/36

@ Consideration of multipliers in other methods

Using AB = %{(A + B)? — (A — B)?} multiplier algorithm to realize circuit design

]

-4

X LUT Xx*?

B

2bit

X LUT X2

Right shift

@ Create squaring calculation logic circuit of upper bit

@ Perform FPGA implementation and confirm operation

AB

LUT 2 times
Addition once
Subtraction twice

OUTLINE o

Research Background
Digital Multiplier Algorithm
Design of Multiply Circuit and Simulation Verification

Circuit Design Using Squaring Calculation Logic and
Simulation Verification

® Compared with Each methods
Future Work
® Conclusion

2017/3/5

29/36

Conclusion

@ Discussion the multiplication algorithm based on square law

@ Propose Divide & Conquer method to reduce the LUT size
in RTL level validation by simulation

reduce computation
circuit area reduction

@ Consider reduction of multiplication using squaring calculation logic
in RTL level validation by simulation

mm) create dedicated circuit to calculate square simple

30/36

Thanks for your listening

31/36

Q&A

Q:This is the operation used in multiplication, have you considered how to make the
other operation (such as sin. cos operation) simple?

A:To use LUT also can realize sin and cos operation, but the capacity of LUT also large. |
will consider it in the future. (After publication, | find an paper named Application of
LUT Cascades to Numerical Function Generators can let the sin . cos operation simple.)

Q:To explain the figure that comparison of various algorithms.

A:In left picture, the horizontal axis represent the number of bits that need to be
multiplied, the vertical axis represent the add times. With the increase in the number of
bit, the square law method has less computation adder times.

In right picture, the horizontal axis represent the number of bits that need to be
multiplied, the vertical axis represent the number of required bit in LUT. With the increase
in the number of bit, using Divide&Conquer method can reduce the size of LUT.

