低スイッチング損失、広 SOA かつ低特性オン抵抗の 40 V LDMOS トランジスタ

松田 順一* 小島 潤也 築地 伸和 神山 雅貴 小林 春夫(群馬大学)

A Low Switching Loss 40 V LDMOS Transistor with Wide SOA and Low Specific On-Resistance Jun-ichi Matsuda^{*}, Jun-ya Kojima, Nobukazu Tsukiji, Masataka Kamiyama, Haruo Kobayashi (Gunma University)

This paper describes a 0.18µm CMOS compatible low switching loss 40V LDMOS transistor with wide SOA and low specific on-resistance for automotive applications. A conventional device having a dual RESURF structure was improved with a grounded field plate to reduce the Miller capacitance. After optimizing impurity profiles in the device, simulations verified that the proposed device has a low figure of merit (gate charge × on-resistance) FOM=48.2 mQ·nC which is about one-third that of the conventional device, a state-of-the-art level characteristic of specific on-resistance $R_{on}A=40.9 \text{ m}\Omega \cdot \text{mm}^2$ at breakdown voltage BV_{DS}=62V, and no drain current expansion for a drain voltage range $V_{DS} \leq 40$ V at the maximum gate voltage rating V_{GS} = 4 V, leading to a wide SOA.

キーワード:横方向二重拡散MOS,スイッチング損失,安全動作領域,信頼性,ホットキャリア,電流増大 (LDMOS, Switching Loss, SOA, Reliability, Hot Carrier, Current Expansion)

1. はじめに

LDMOS (Lateral Double Diffused MOS) トランジスタ はスイッチング電源の素子として民生用だけではなく、車 載用にも広く用いられている。 車載用には、一層の広 SOA (Safe Operating Area) 及び高信頼性が要求される。広 SOA を得るには、高ゲート電圧及び高ドレイン電圧で発生する ドレイン電流増大 (Current Expansion: CE)⁽¹⁾ を抑える必 要がある。また、高信頼性を得るには、ドレイン側のゲー ト端近傍で発生するインパクトイオン化を抑えてホットキ ャリア耐性を上げる必要がある。また、低消費電力化して デバイスの発熱を抑制するために低特性オン抵抗及び低ス イッチング損失も求められる。それらに対応するため、30 ~50 V動作デュアル RESURF (Reduced Surface Field) 構 造の LDMOS が提案された⁽²⁾。しかしながら、この構造で はスイッチング損失が大きく、その損失を含めたデバイス 性能を表す FOM (Figure of Merit) を十分に低減できてい なく、改善する必要があった(3)。

今回、上記 30~50 V 動作デュアル RESURF LDMOS 構 造を基にスイッチング損失を低減するように改善し、その 特性をシミュレーションで確認した。2.で従来型と今回の提 案型の構造を紹介し、3.でその提案型の電流・電圧特性、特 性オン抵抗、ブレークダウン電圧、そして FOM を示し、更 に4.でSOA及びホットキャリア耐性を考察する。

従来型と提案型 LDMOS トランジスタ

〈2·1〉 従来型 LDMOS トランジスタ

0.35 µm CMOS プロセスをベースにした従来型 LDMOS トランジスタの断面構造を図 1(a)に示す⁽²⁾⁽³⁾。ドリフト領域 は、二つの p 型埋め込み層 (PBL1 と PBL2) で囲まれたデ ュアル RESURF 構造になっている。PBL1 はゲート側ドリ

(a) 従来型LDMOSトランジスタ
(b)提案型LDMOSトランジスタ
図 1 従来型と提案型LDMOSトランジスタの断面構造
Fig. 1. Cross-sections of the conventional and

the proposed LDMOS transistors.

1⁄6

フト端周りの RESURF を強化しており、その領域の電界を ー層弱める効果がある。PBL2 はドリフト領域全体の RESURF に有効に寄与する。PBL2 がドレイン領域下部で 除去してあるのは、ドレイン-基板(ソース)間ブレーク ダウンの低下を防ぐためである。ドリフト領域は、二つの n 型層(深い NDL1 と浅い NDL2)からなっており、NDL2 がドリフト表面層の不純物濃度を高めるため、CE を抑えて 広 SOA 化する⁽⁴⁾。フィールド・プレート(Field Plate: FP) は RESURF を補助するが、ゲートに接続されており、ミラ ー容量を大きくし、スイッチング損失を増大させている。

〈2·2〉 提案型 LDMOS トランジスタ

提案型 LDMOS トランジスタでは、0.18 µm CMOS プロ セスをベースにして従来型を改善した。その断面構造を図 1(b)に示す。提案型のx方向(ソースードレイン方向)セル ピッチは従来型よりチャネル長分(0.17 µm)だけ縮まり、 3.555 µm である。ドリフト領域及びゲート端からの FP の 長さは、それぞれ従来型と同じである。提案型では、ミラ ー容量を低減するため、FP を接地した GFP (Grounded Field Plate)構造を採用した。GFP構造では、オン時にド リフト領域に誘起される電子密度が従来の FP 構造に比べ て低下し、オン抵抗が増大する。したがって、この増大を 抑え、むしろ低減させるためにゲート端周りを除いた浅い ドリフト領域に三つ目のn型層(NDL3)を導入した。NDL3 は CE 抑制にも有効である。

〈2·3〉 シミュレーション

アドバンスソフト社の3次元デバイス・シミュレータ Advance/DESSERT (サンプル版)⁽⁵⁾を用いて、デバイス幅 を全て 0.3μ mとした実質2次元構造でシミュレーションを 行った。したがって、シミュレーションでのデバイス1セ ル分の面積は、 3.555μ m× 0.3μ m= 1.0665μ m²となる。 不純物濃度プロファイルの形成は関数入力による。

図 2 提案型 LDMOS トランジスタの IDS-VGS 特性の VDS 依存性(1 セル)

3. シミュレーション結果

〈3·1〉 IDS - VGS 特性

図 2 に提案型 LDMOS トランジスタ(1 セル分)の弱反 転領域のドレイン電流 IDS - ゲート電圧 VGS 特性のドレイン 電圧 VDS 依存性を示す。しきい値電圧 VT (at IDS = 0.1 μ A) は、VDS = 0.1 V で 1.026 V (外挿しきい値電圧は 1.05 V) であり、VDS = 60 V で 0.800 V まで低下するが、IDS は十分 に低く抑えられており、VDS \leq 60 V の領域までリーク電流 の問題はない。これは、提案型のデュアル RESURF 構造が 有効に寄与しているためである。

〈3·2〉 IDs - VDs 特性

図 3 に提案型 LDMOS トランジスタ(1 セル分)の I_{DS} - V_{DS} 特性の V_{GS} 依存性を示す。 V_{GS} の最大定格電圧 4 V で は、 $V_{DS} \leq 40$ V の領域で CE の発生はない。また、 V_{GS} の 動作電圧 3.3V では、 V_{DS} が 45 V 程度まで CE の発生はなく、

図3 提案型 LDMOS トランジスタの IDS-VDS 特性の VGS 依存性(1 セル)

図 4 提案型 LDMOS トランジスタのブレークダウン特性 (V_{GS}=0V)(1セル)

Fig. 4. A breakdown characteristic at $V_{GS}=0$ V for the proposed LDMOS transistor (one cell).

図 5 特性オン抵抗対ブレークダウン電圧特性 Fig. 5. Characteristics for specific on-resistance vs. breakdown voltage.

 V_{DS} の動作電圧 40 V に対し、十分な SOA があるものと考 える。また、この特性の $V_{GS} = 3.3$ V における線形動作領域 から計算した特性オン抵抗 $R_{on}A$ は、40.9 m Ω ·mm² である。 この値は、従来型 LDMOS トランジスタの値 (44.8 m Ω · mm²)⁽³⁾より約 10%低くなっている。

〈3·3〉 ブレークダウン特性

図4に提案型 LDMOS トランジスタ(1 セル分)のブレ ークタウン特性(at $V_{GS} = 0 V$)を示す。これからドレイン ー基板(ソース)間のブレークダウン電圧 BVDsは 62 V で ある。また、ブレークダウン時の電界強度の高い領域は、 PBL1 と PBL2 の端(ドリフト層と接触する箇所)の基板 内部にあり、この領域でブレークダウンが発生する。した がって、ブレークダウン時のインパクトイオン化により発 生するキャリアが MOSFET の特性へ影響を与える可能性 は低いものと考える。更に、ブレークダウン時の真性 MOSFET のドレイン電圧 VDS,INT(ドレイン側ゲート端の 表面電位)は1.27 V であり、これからゲート酸化膜に掛か

Fig. 6. Time variations of the gate voltage and the gate current during turn on for the proposed LDMOS transistor (one cell). る電界強度は 1.6 MV/cm 程度になる。ゲート酸化膜の破壊 電界強度が 10MV/cm 以上であることから、この電界強度は 十分に低く、ブレークダウン時にゲート酸化膜へ損傷を与 えることはないと考える。

〈3・4〉 特性オン抵抗対ブレークダウン電圧特性

図 5 に提案型 LDMOS トランジスタの $R_{on}A-BV_{DS}$ 特 性を従来型 LDMOS トランジスタ⁽³⁾及び最近発表された先 端レベルの UMC 社のデータ⁽⁶⁾と比較して示す。提案型 LDMOS トランジスタの特性は UMC 社のものと同レベル にあり、先端レベルにあると言える。

〈3·5〉 スイッチング損失を含む FOM

図 6 に提案型 LDMOS トランジスタ (1 セル分)のター ンオン期間における V_{GS} とゲート電流 I_G の時間変化を示 す。ここでは、デバイス 1 セルに対し、ゲートへ入力抵抗 500 kΩを、ドレインへ負荷抵抗 5 MΩ をそれぞれ接続し、 ドレインへの供給電圧を 40V に設定した状態で、ゲート端 子へ0 V から 3.3 V のステップ電圧を印加した。図 6 の I_G の時間変化を積分したゲート電荷 Q_G を単位面積当たりに 換算したゲート電荷 Q_G/A は、1.18 nC/mm²となる。この値 と R_{on}A の値からスイッチング損失を含めたデバイスの性能 を表す FOM (= R_{on}A × Q_G/A)は、48.2 mΩ·nC となる。こ の値は、従来型 LDMOS トランジスタの値 (141 mΩ·nC)⁽³⁾ より 1/3 程度低くなっている。この低下は、主にミラー容量 の低減とゲートへの供給電圧が 5V から 3.3V に低下したこ とによる。

4. 考察

〈4·1〉 CE 抑制による広 SOA

CE が強く発生している提案型 LDMOS トランジスタの ゲート最大定格電圧 VGS = 4Vにおける IDSの成分を調べる。 図 1 に示すようにソース側の電流を n⁺ソースを流れる電子 電流 ISS と p-ボディを流れる正孔電流 IPB に分ける。IPB と

図7 提案型 LDMOS トランジスタのドレイン電流成分 (V_{GS}=4V) (1セル)

図8 提案型 LDMOS トランジスタのドレイン電圧に対す る真性 MOSFET のドレイン電圧依存性 Fig. 8. The dependence of the drain voltage for the intrinsic MOSFET on the drain voltage for the proposed LDMOS transistor.

図 9 提案型 LDMOS トランジスタのソース電流のドレイン電圧依存性 (V_{GS}=4V)

Fig. 9. The drain voltage dependence of the source current for the proposed LDMOS transistor biased at V_{GS} = 4 V.

基板端子に流れる正孔電流 IsuB は、Issにより基板中で発生 するインパクトイオン化に起因する。Ins は、Iss、IPB、及 び IsuB の総和からなる。図 7 にこれらの電流成分(1 セル 分)の Vps 依存性を示す。但し、正孔電流成分は、まとめ て IPB + IsuB で表してある。Vps \leq 40 V の領域では、Ips と Iss はほぼ一致し、Vps の増大と共に僅かに上昇する飽和特 性を示しているが、Vps > 40 V の領域では、Ips が Iss より 急激に上昇し CE 現象を起こしている。この Ips の上昇は、 IPB + IsuB の上昇が Iss に加わった結果であり、正孔電流の 増大に起因している。また、Iss は Vps \Rightarrow 52 V まで上昇後、 再度飽和する傾向を示している。CE 現象を解明するには Iss 増大の原因を調べる必要がある。

先ず、VDs ≦ 52 Vの領域における Issの増大の原因を調

べる。図8に提案型 LDMOS トランジスタのドレイン電圧 V_{DS}に対する真性 MOSFET のドレイン電圧 V_{DS,INT} 依存性 を示す。V_{GS}=4Vの場合、V_{DS,INT} は V_{DS} \leq 40Vの領域で V_{DS}の増大と共に飽和する傾向にあるが、V_{DS} > 40Vの領 域で上昇に転じる。この V_{DS,INT}の上昇は、インパクトイオ ン化によりドリフト領域内のキャリア数が増加し、その領 域の抵抗が低下することに起因する。この V_{DS,INT} を用いて 以下の MOSFET の線形動作領域の電流式⁽⁷⁾で I_{SS}を見積も る。

$$I_{SS} = K_{p} \left[(V_{GS} - V_{T}) V_{DS,INT} - \frac{\alpha}{2} V_{DS,INT}^{2} \right] \dots \dots \dots (1)$$

ここで Kpは比例係数であり以下で表される。

ここで、µは移動度、Coxは単位面積当たりのゲート酸化膜 容量、W はチャネル幅、L はチャネル長である。また、α は以下で表される。

$$\alpha = 1 + \frac{\gamma}{2\sqrt{\phi_0}} \dots (3)$$

ここで、γは以下で表される基板バイアス係数である。

ここで、qは素電荷量、Esはシリコンの誘電率、NAは p-ボ ディの不純物濃度である。また、 φ0 は以下で表される。

$$\phi_0 = 2\phi_F + 6\Delta_{th} \quad \dots \quad (5)$$

ここで、 $\phi_{\rm F}$ はp-ボディのフェルミ電位、 $\Delta_{\rm th}$ は熱電圧である。(1)式に、図8から得られる $V_{\rm DS}=20V$ での $V_{\rm DS,INT}$ 、図7から得られる $V_{\rm DS}=20V$ での $I_{\rm SS}$ 、そして $V_{\rm T}$ に外挿しきい値電圧 1.05 V を代入して Kpを求める。Kpをこの値に固定し、Issの $V_{\rm DS,INT}$ 依存性を図8から $V_{\rm DS}$ 依存性に換算して $0V \leq V_{\rm DS} \leq 52V$ の範囲で求め図9に破線で表す。ここで、Cox= 2.83×10^{-7} F/cm²、NA= 4×10^{17} cm⁻³ として計算した。このようにして求めたIssはシミュレーションで得られたIssとよく一致している。このことから、この範囲のIssの増大は、線形領域で動作している真性 MOSFET の $V_{\rm DS,INT}$ の上昇に起因していると言える。

 $V_{DS} > 52 V$ の領域における Issの増大の原因を調べる。 ピンチオフによる飽和電圧 V_P は(1)式で $dI_{SS}/V_{DS,INT} = 0$ から以下で表される。

$$V_P = \frac{\left(V_{GS} - V_T\right)}{\alpha}....(6)$$

これを求めると、 $V_P = 1.8 V$ になる。 $V_{DS,INT} = V_P$ のところの V_{DS} は図7から54 V であり、この V_{DS} の箇所ではIssは既に飽和領域に入っている(図7参照)。したがって、この領域の飽和特性は、 $V_{DS} = 52 V$ でのキャリアの速度飽和に起因し、 $V_{DS} > 52 V$ では μ は一定と見なせるものと考え

られる。(1) 式において $V_{DS,INT}=52V$ とし、図 2 から V_{DS} に依存した V_T の低下を考慮し、L にチャネル長変調効果を 取り込んで計算すると、Iss は図 9 の破線($V_{DS} > 52 V$) になる。これはシミュレーションで得られた Iss とよく一致 しており、この領域はキャリアの速度飽和に起因する真性 MOSFET の飽和特性を表していると言える。

上記 Iss の特性を基に CE の抑制による広 SOA を確保す る方法を考察する。CE の発生は、ドリフト領域を流れる電

Fig. 11. The drain voltage dependence of the electric field profiles in the x-direction along the surface for the proposed LDMOS transistor biased at $V_{GS}=2V$.

子電流密度が上昇し、電子密度がドリフト領域の中性状態 の電子密度(不純物濃度)を超えると、Kirk 効果®により 電界強度の強い箇所がゲート側ドリフト端からドレイン側 ドリフト端へ移動し(9)、ドレイン周りでインパクトイオン化 が顕著になることに起因する⁽¹⁾。図 10 に提案型 LDMOS ト ランジスタの表面に沿った x 方向電界 Ex プロファイルの VDS 依存性を示す。ゲート側ドリフト端では、Ex は VDS < 20 Vの領域で V_{DS} と共に増大しているが、 $20 V \leq V_{DS} \leq 48 V$ の領域でその増大は抑制されている。これは、PBL1 による 強化された RESURF に起因する。一方、ドレイン側ドリフ ト端では、Kirk 効果により V_{DS}=40 V で、E_xのピークが表 れ始め、そのピークは VDsの増大と共に急激に上昇し、CE を引き起こす。この CE が発生するところの VDs を高くし て SOA 領域を広げるには、VGS 及び VDS の高い領域で電子 電流である Iss を上昇させない、即ち上記解析から Iss は VDS.INT に依存するため、VDSの増大に伴う VDS.INTの上昇を 抑制することが重要である。PBL1は前記の如くゲート側ド リフト端周りの RESURF を強化しており、これがその抑制 に有効であると考える。また、SOA 領域の拡張には、ドリ フト領域の不純物濃度を高くしてIssによる電子密度がそれ を超えるしきい値を高くすることも重要である。これには NDL3 の導入が有効であると考えるが、不純物濃度の増加 と BV_{DS} 低下のトレードオフを考慮して不純物濃度を最適 化する必要がある。

〈4・2〉 ホットキャリア耐性

LDMOS ではホットキャリアによる特性劣化は、VGs を低 く (VGs の最大動作電圧の 1/2 程度) 設定した状態で真性 MOSFET を飽和動作させている場合に DAHC (Drain Avalanche Hot Carriers)により大きくなる傾向にある。し たがって、VGs = 2 V における真性 MOSFET の動作状態を 調べる。VGs = 2 V における真性 MOSFET の VP (= VDS,INT) は (6) 式から 0.6 V である。図 8 には VGs = 2 V の場合の

図 12 図 11 の x=1000 nm における x 方向電界のドレイ ン電圧依存性

biased at V_{DS} =40 V and V_{GS} =2 V.

 $V_{DS,INT} - V_{DS}$ 特性も示してある。これから、 $V_{DS,INT} = 0.6 V$ における V_{DS} は 1.9 V である。図 3 によると、 $V_{GS} = 2 V$ で は $V_{DS} = 2 V$ が飽和電圧と見なせる。したがって、 $V_{GS} = 2 V$ における I_{DS} の飽和特性は、真性 MOSFET のピンチオフに 起因していると言え、ゲート側ドリフト端周りの高電界が 真性 MOSFET のホットキャリア耐性に影響を与える。

図 11 に提案型 LDMOS トランジスタの $V_{GS}=2V$ におけ る表面に沿った E_x プロファイルの V_{DS} 依存性を示す。 E_x はゲート側ドリフト端近傍 (x \Rightarrow 1000 nm) でピークを持ち V_{DS} の増大と共に上昇するが、これは飽和する傾向にある (図 12 を参照)。これは、ゲート側ドリフト端周りの電界 が PBL1 により強化された RESURF で緩和されたためであ る。PBL1 のないドリフト構造では、ゲート側ドリフト端周 りで大きな電界のピークを持つ⁽³⁾。したがって、PBL1 を持 つデュアル RESURF 構造では、ゲート側ドリフト端周りの E_x を高 V_{DS} でも低減でき、インパクトイオン化を抑えて真 性 MOSFET の高ホットキャリア耐性を得る可能性がある。

また、図 11 では、 $x=2500 \sim 2700$ nm の範囲に E_x はピー クを持ち、 V_{DS} の増大と共に上昇している。このピークは、 GFP 端及び PBL2 端の電界集中に起因する。この箇所の E_x 上昇により発生するインパクトイオン化がデバイス特性に どのように影響するか推測する。図 13 に $V_{DS} = 40$ V かつ $V_{GS} = 2$ V においてインパクトイオン化により発生した正孔 電流密度分布を示す。正孔電流密度は GFP 端周りの表面か ら離れた基板(ドリフト層)の内部で高くなっているため、 そこで発生する高エネルギー・キャリアが表面に損傷を与 えデバイス特性に影響を及ぼす可能性は低く、この領域で E_x が高くなることは問題ないと考える。

5. まとめ

提案型 40 V 動作 LDMOS トランジスタは、車載用途向け に適した特性を持つことをシミュレーションにより確認で きた。フィールド・プレートを接地することによりスイッ チング損失を含む FOM を低減(従来比約 1/3)でき、ドリ フト層の不純物濃度を高めて最適化したデュアル RESURF 構造により広 SOA が得られた。また高ホットキャリア耐性 を得る可能性があることも示した。更に、特性オン抵抗の 低減化も図れ、先端レベルの特性オン抵抗対ブレークダウ ン電圧の特性を得た。

謝辞

本研究で用いたデバイス・シミュレータは、アドバンス ソフト社から借用させて頂いているものであり、アドバン スソフト社に深謝申し上げる。なお、このシミュレータは、 国立研究開発法人科学技術振興機構の助成を受けて (A-STEP プログラム)アドバンスソフト社で開発された ものである。

文 献

- (1) S. Poli, S. Reggiani, R. K. Sharma, M. Denison, E. Gnani, A. Gnudi, and G. Baccarani : "Optimization and Analysis of the Dual n/p-LDMOS Device", IEEE Trans. Electron Devices, Vol. 59, No. 3, pp. 745-753 (2012).
- (2) 松田順一,神山雅貴,築地伸和,小林春夫:「高信頼性 Nch-LDMOS の提案」,電気学会研究会資料,電子デバイス 半導体電力変換 合 同研究会, EDD-15-066, SPC-15-148, pp. 11-16 (2015).
- (3) J. Kojima J. Matsuda, M. Kamiyama, N. Tsukiji, and H. Kobayashi : "Optimization and Analysis of High Reliability 30-50V Dual RESURF LDMOS", in *Proc. ICSICT*, Hangzhou, China, S25-3 (2016).
- (4) P. L. Hower, J. Lin, and S. Merchant : "Snapback and Safe Operating Area of LDMOS Transistors", Technical Digest of International Electron Devices Meeting, IEDM'99, pp. 193–196 (1999).
- (5) 山口憲,原田昌紀,桑原匠史,大倉康幸:「デバイスシミュレーション」,アドバンスシミュレーション(アドバンスソフト株式会社), Vol. 21, pp. 39-69 (2015).
- (6) H.-L. Liu, Z.-W. Jhou, S.-T. Huang, S.-W. Lin, K.-F. Lin, C.-T. Lee, and C.-C. Wang : "A Novel High-Voltage LDMOS with Shielding Contact Structure for HCI SOA Enhancement", 29th International Symposium on International Power Semiconductor Devices & IC's (ISPSD), pp.311–314 (2017).
- (7) Y. Tsividis and C. McAndrew : "Chapter 4 in Operation and Modeling of the MOS Transistor Third Edition", Oxford University Press, New York (2011).
- (8) C. T. Kirk : "A Theory of Transistor Cutoff Frequency (ft) Falloff and High Current Densities", IRE Transactions on Electron Devices, Vol. 9, No. 2, pp.164–174 (1962).
- (9) H. C. Poon, H. K. Gummel, and D. L. Scharfetter : "High Injection in Epitaxial Transistors", IEEE Transactions on Electron Devices, Vol.16, No.5 pp.455-457 (1969).